• Title/Summary/Keyword: 국부적 좌굴

Search Result 133, Processing Time 0.025 seconds

Experimental Study on Performance Evaluation of Steel Frame with Buckling Control Brace (좌굴제어 가새를 가진 가새골조의 성능향상에 관한 실험적 연구)

  • Lee, Sang-Ju;Han, Sang-Eul;Noh, Sam-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.181-188
    • /
    • 2007
  • This research presents two methods to prevent local buckling from circular tube brace and then verify their performance capacity through a cyclic loading test. As control methods on local buckling, one is to restrict local buckling as attaching cover plate at range of buckling. And the another is to exclude danger of buckling as inserting contraction device with rod and spring at the center of brace. The purpose of this research is to develop structural device for restriction of local buckling or for exclusion of its. And we investigate appliance of suggested methods through an experiment. We also estimate the improvement of performance capacity in a quantitative respect.

Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior (국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정)

  • Kim, JoungRae;Lee, WonHo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2017
  • In this paper, finite element analysis of Steel-Concrete panel(SCP) was conducted considering the local buckling behavior and the optimized design of shear studs arrangement was studied by comparing with design guidelines. If the spacing of the studs of SCP is widened, it is easy to be manufactured and the weight fo members become lighter. On the other hand, the steel plate would be vulnerable to the local buckling behavior. Therefore, the guidance and design of SCP limit the maximum spacing of the studs to prevent the development of shear cracks and local buckling, however this is based on the design criteria of the other composite structures. Parameter studies with changes in stud spacing on steel plate and SCP are conducted and the obtained result was compared with values given in design guidelines.

Determination of the Allowable Load for Trussed Web Beam (트러스웹을 가진 보의 허용하중 산정)

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • The efficient beam members for modern greenhouse need to be much lightweight with the required flexural and buckling strength. To confirm the applicability and practicality of the trussed web beam recently proposed for column and beam members of greenhouse, the flexural behavior and buckling characteristics were analyzed by the finite element approach. On the basis of analytical studies, the member design process was presented considering the lateral and local buckling behavior. Also, two improved alternatives which were capable of retaining the lateral and local buckling effectively were suggested.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Inelastic Cyclic Behavior of Locally Buckled Steel Members (국부좌굴된 강구조부재의 비탄성 반복 거동)

  • Lee, Eun Taik;Song, Keum Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.139-149
    • /
    • 2005
  • Post-local buckling behavior is a very important consideration in plastic and seismic design of steel structures. It describes the structural behavior up to the final collapse state. In order to assess the actual reliability of structures under severe repeated loading, such as strong earthquakes, it is necessary to evaluate the progressive cyclic deterioration of stiffness as well as the strength and energy dissipation capacity of the structures after local buckling happens. In this study, a simple analytical model developed for predicting post-local buckling behavior for cyclic and non-proportional loading histories, has been proposed. This analytical model uses the stress resultant model based on the two surface model. Analytical moment-curvature relationship using this model compare well with the experimental results in constant amplitude cycling, and linearized energy deterioration which is very important in seismic design can be predicted from the proposed model.

Optimum Design of Stiffeners in the Stiffened Cylindrical Shells Based on Structural Stability (좌굴을 고려한 원통쉘 보강재의 최적설계에 대하여)

  • 장창두;한성곤
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.81-88
    • /
    • 1993
  • An efficient approach to the buckling analysis of stiffened cylindrical shells with rings and stringers under the axial and the lateral pressure loadings is presented. By this approach, the local buckling as well as overall buckling behavior has been investigated considering the discreteness of stiffeners and appropriate adoption of displacement functions. Some design criteria based on structural stability to determine optimum scantlings of stiffeners are also suggested. It is shown that the optimum scantlings of stiffeners can be designed from the condition of equal local and overall buckling strength.

  • PDF

A Study on the Local Buckling of H-Beams at Elevated Temperatures (온도상승(溫度上昇)에 따른 H-형강(形鋼)보의 국부좌굴(局部挫屈)에 관(關)한 연구(硏究))

  • Koo, Bon Youl;Kang, Moon Myung;Kang, Sung-Duk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.103-111
    • /
    • 2004
  • This paper dealt with the local buckling of H-beams investigated mainly using the parameters of load ratios. load conditions, and support boundary condition considering predicted uniformly elevated temperatures. The physical properties of the material at elevated temperatures followed EC3 Park 1.2. The local buckling of the plates in steel beams show that they are governed by the yield stress or the critical stress of the steel plates according to the ratios of b/tf, d/tw. The evaluation of uniformly heated steel beams on the local buckling considered the stress and moment ratios to the LRFD.