• Title/Summary/Keyword: 구조 신뢰성 해석

Search Result 893, Processing Time 0.026 seconds

Review of the Application of the First-Order Reliability Methods to Safety Assessment of Structures (1차 신뢰성 해석법의 구조적 안전성평가에의 적용에 관한 재고)

  • Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.195-206
    • /
    • 1991
  • This paper is concerned with comparison of the first-order reliability methods applied to the assessment of structural safety. For convenience the reliability methods are divided into two categories : the One can explicitly consider the effects of uncertainties in material and geometric variables on those of load effects, say stresses and displacement in the structural analysis procedure and the other one does not. The first method is commonly termed as the stochastic finite element method(SFEM) or probabilistic finite element method(PFEM) and the second method is termed heroin as the ordinary reliability method to distinct it from the stochastic finite element method in which the structural analysis is carried out just once and the load effects are directly input into the reliability analysis procedure. This is based on the reasonable assumption that the level of uncertainties of load effects is the same as those of load itself. In this paper the above two different reliability method have been applied to the safety assessment of plane frame structures and compared thier results from the view point of their efficiency and usefulness. As lear as results of the present structure models are concerned, it can be said that the ordinary reliability method can give reasonable results when the uncertainties of material and geometric variables are comparatively small, say when less than about 15% and the stochastic finite element method is desired to be applied to the structure in which the COV's are comparatively great, say when greater than about 15%.

  • PDF

Inverse Estimation of Fatigue Life Parameters for Spring Design Optimization (스프링 최적설계를 위한 피로수명 파라미터의 역 추정)

  • Kim, Wan-Beom;An, Da-Wn;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.345-348
    • /
    • 2011
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이다. 이 방법은 시험 수행에 드는 시간과 비용을 줄여준다. 그러나 공정 과정과 환경에 의하여 생기는 입력 물성치들의 변화 때문에 우리는 유한요소해석의 결과를 전적으로 믿어서는 안 된다. 따라서 유한요소해석의 신뢰성을 증명하는 것은 매우 중요하다. 본 연구에서는 현장에 축적된 피로 수명 시험 데이터를 바탕으로 유한요소해석을 이용하여 피로수명 파라미터를 역 추정 하는 연구를 수행하였다. 베이지안 접근법을 이용하여 불확실성 피로 수명 파라미터의 사후분포를 구하였고, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 역 추정된 파라미터의 샘플 데이터를 생성하였다. 얻어진 샘플 데이터를 기반으로 새로운 형상의 스프링에 대한 피로 수명을 예측한다. 신뢰성 기반 형상 최적화(RBDO)는 서스펜션 코일 스프링의 요구수명을 만족시키기 위하여 수행된다. 또한 크리깅 근사 모델은 유한요소해석의 연산 량 감소를 위해 이용한다.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

Importance Sampling Technique for System Reliability Analysis of Bridge Structures (교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법)

  • 조효남;김인섭
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.119-129
    • /
    • 1991
  • This study is directed for the development of an efficient Importance Sampling Technique for system reliability analysis of bridge structures. Many methods have been proposed for structural reliability assessment such as the First-order Second-Moment Method, the Advanced Second-Moment Method, Monte Carlo Simulation, etc. The Importance Sampling Technique can be employed to obtain accurate estimates for the system reliability with reasonable computation effort. Based on the results of example analysis, it may be concluded that Importance Sampling Technique is a very effective tool for the system reliability analysis.

  • PDF

Stress Analysis of the GEO-KOMPSAT-2 Tubing System (정지궤도복합위성 추진계 배관망 구조해석)

  • Jeong, Gyu;Lim, Jae Hyuk;Chae, Jongwon;Jeon, Hyung-Yoll
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this paper, the structural analysis of the Geostationary Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2) tubing system is discussed, and the structural integrity of the tubing system is assessed by comparative analysis with the results of overseas partner AIRBUS. Securing structural reliability of the tubing system is a very important key element of the propulsion system of the GEO-KOMPSAT-2 satellite. Therefore, FE modeling of the propulsion tubing was carried out directly using the CAE program, and structural analysis was performed to evaluate the stress state under launch conditions. Hoop stress, axial stress, bending stress, and torsion stress were calculated according to diverse load conditions by using pressure stress analysis, thruster alignment analysis, sine qualification load analysis, and random qualification load analysis. From the results, the Margin of Safety (MoS) of the tubing system is evaluated, and we can verify the structural integrity of the tubing system when subjected to various launch loads.

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis (유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.718-725
    • /
    • 2017
  • A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method (LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가)

  • Huh, Jung-Won;Jung, Hong-Woo;Ahn, Jin-Hee;An, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

On the Transverse Strength of SWATH Ship - Reliability Analysis against Ultimate and Fatigue Strength - (SWATH선의 횡강도에 관한 연구 -최종강도와 피로강도에 대한 신뢰성 해석-)

  • J.S. Lee;J.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.189-196
    • /
    • 1991
  • This paper is an illustration of the application of the reliability analysis to the transverse structure of a SWATH ship. The ultimate strength of plate members on the cross structure and upper part of strut are considered in the reliability analysis. The fatigue reliability analysis has been also carried out at the junction of cross structure, sponsors and strut. Included is also an example of the allowable fatigue damage level. Demonstrated is the reliability study of series system of which elements are the ultimate and fatigue failure as well. Doing this would be desirable to get a truer solution of the structural safety level. The paper ends with a brief summary of the present reliability study and same important points which may be useful at the design stage.

  • PDF

Study of Reliability Index in Concrete Structures Considering Coefficient of Variation of Degradation Factors (열화인자별 변동계수 변화에 따른 콘크리트 구조물의 신뢰성 지수에 관한 연구)

  • Kim, Joo-Hyung;Jung, Sang-Hwa;Kim, Tae-Sang;Lee, Kwang-Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, a variety of researches has been carried out to estimate the reliability-based analysis and design method of concrete structures and is attracted by probabilistic-based durability analysis/method of concrete structures subjected to chloride containing environment using MCS (Monte Carlo Simulation). Probabilistic-based durability analysis/method was proposed by lots of researches, but there is the lack of data for degradation factors for the calculation of probability distribution. The reliability based durability analysis method represents that the service life and reliability index varies with the probability distribution and coefficient of variation of each factor. Therefore, in this paper, the importance of experiment data for the degradation factors is confirmed and the study of reliability index in RC structures under chloride attack environments is performed considering the variation coefficient of degradation factors.

  • PDF