• Title/Summary/Keyword: 구조화된 불확실성

Search Result 28, Processing Time 0.025 seconds

Robust $H_{\infty}$ Controller for State and Input Delayed Systems with Structured Uncertainties (구조화된 불확실성과 상태와 입력에 시간지연이 있는 시스템을 위한 강인 $H_{\infty}$ 제어기)

  • Lee, Joon-Hwa;Moon, Young-Soo;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.338-342
    • /
    • 1997
  • 본 논문에서는 상태와 입력에 시간지연과 구조화된 불확실성이 있는 시스템을 위한 강인 H/sub .inf./ 제어기를 제안한다. 제안된 제안기는 시간지연의 크기에 관계없이 항상 불확실한 시스템을 안정화시키고, 또한 제한된 크기의 어떤 구조화된 불확실성에 대해서도 항상 폐루프 전달함수의 H/sub .inf./ 노옴의 크기를 주어진 레벨 이하로 줄인다. 제어기는 볼록 최적화 알고리즘을 이용한 LMI 문제를 풀어서 구한다.

  • PDF

Improvement of the Robustness Bounds of the Linear Systems with Structured Uncertainties (구조화된 불확실성의 비선형요소를 갖는 선형 시스템의 강인영역 개선)

  • Jo, Jang-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.171-179
    • /
    • 2001
  • The purpose of this paper is the derivation and development of the new definitions and methods for the new estimation of robustness for the systems having structured uncertainties. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. The systems considered are assumed to be nominally linear, with time-variant, nonlinear bounded perturbations. This new techniques demonstrate the improvement of robustness bounds from the numerical results.

  • PDF

Robust Pole Placement for Structured Uncertain Systems (구조화된 불확실성이 있는 시스템의 강인한 극배치 제어)

  • 이준화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Robust Control of Input Delayed Systems with Structured Uncertainty (구조화된 불확실성을 갖는 입력지연 시스템의 강인제어)

  • 이보형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.270-270
    • /
    • 2000
  • Input delay is frequently encountered in the practical systems since measurement delay and computational delay can be represented by input delay. In this viewpoint, this paper deals with the robust control problem of input delayed systems with structured uncertainty. Robust stability conditions are provided in terms of linear matrix inequalities(LMIs) and it is shown that the proposed conditions can give less conservative maximum bound of input delay guaranteeing robust stability.

  • PDF

The relationship between of Uncertainty, Depression, Physiologic Index and Basic Psychological Need of Hemodialysis Patients (혈액투석환자의 질병 불확실성, 우울, 생리지표와 기본심리욕구와의 관계)

  • Cho, Young-Mun;Yun, Kyung-Soon
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.281-291
    • /
    • 2017
  • This purpose of study was to identify variables predicting basic psychological need in hemodialysis patients. The participants were 134 patients from two major general hospitals and two dialysis center located in J city. Data were collected using self-report questionnaires and physiological index. Data analysis was done by using SPSS WIN 18.0 program for one-way ANOVA, independent t-test, Pearson correlation coefficients, and multiple regression. This study showed a negative correlation between basic psychological need and uncertainty(r=--.464, p<.001), depression(r=-.422, p<.001). In addition, relationships and physiological index were Positively correlated. The uncertainty(${\beta}=-.345$), depression(${\beta}=-.279$), physiological index(${\beta}=-.117$) have a 29% explanatory power for the basic psychological need in hemodialysis patients. Physiological index, uncertainty and depression in turn influenced the basic psychological needs of hemodialysis patients. It is necessary to develop nursing strategies and programs to reduce disease uncertainty and depression in order to increase self-deterministic health behavior through autonomy, competence and relationship satisfaction.

Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach (변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법)

  • Kim, Joon Ki;Yang, Seung Hyeop;Bang, Kyung Ho;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.181-186
    • /
    • 2012
  • In this paper, we describe the synthesis of robust and non-fragile Kalman filter design for a class of uncertain linear system with polytopic uncertainties and filter gain variations. The sufficient condition of filter existence, the design method of robust non-fragile filter, and the measure of non-fragility in filter are presented via LMIs(Linear Matrix Inequality) technique. And the obtained sufficient condition can be represented as PLMIs(parameterized linear matrix inequalities) that is, coefficients of LMIs are functions of a parameter confined to a compact set. Since PLMIs generate infinite LMIs, we use relaxation technique, find the finite solution for robust non-fragile filter, and show that the resulting filter guarantees the asymptotic stability with parameter uncertainties and filter fragility. Finally, a numerical example will be shown.

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

Effect of Structured Information on Immediate Preoperative Anxiety and Uncertainty for Women Undergoing Laparoscopic Hysterectomy (수술 전 구조화된 정보제공이 복강경하 자궁절제술 여성의 수술대기 중 불안과 불확실성에 미치는 효과)

  • Cho, Youn Hee;Chun, Nami
    • Women's Health Nursing
    • /
    • v.21 no.4
    • /
    • pp.321-331
    • /
    • 2015
  • Purpose: Purpose of this study was to identify the effect of structured information on immediate preoperative anxiety and uncertainty for women undergoing total laparoscopic hysterectomy. Methods: Sixty women who were admitted for total laparoscopic hysterectomy were recruited at a university hospital in Gyeonggi-do from June to October 2014. Thirty women were assigned to either the experimental or the control group. Women in the experimental group were provided structured information, which consisted of visual and auditory materials about surgical preparation and process, practical experience on devices such as IV-PCA pump and Inspiro-meter and actual experience on route to go to the operating room. State-anxiety, uncertainty, and blood pressure and pulse rate as biological indicators were measured before and after the intervention to examine the effect. Results: Significant group differences were found on state anxiety, uncertainty, including ambiguity, inconsistency, and unpredictability at the holding area. There was a significant difference on pulse rate in the operating room between the two groups. Conclusion: Findings demonstrated that the structured information provided for women undergoing laparoscopic hysterectomy preoperatively was effective on immediate preoperative anxiety and uncertainty. Nurses may contribute to decreasing patients' anxiety and uncertainty by utilizing this structured information preoperatively.

Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System (Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계)

  • Lee, Hyung-Ho;Kim, Joon-Ki;Kim, Woon-Ki;Jo, Sang-Woo;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.32-41
    • /
    • 2008
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertain tracking servo system of blu-ray disc drive, as well as static state feedback controller with polytopic uncertainty Similarity any other control system, the objective of the track-following system design for optical disc drives is to construct the system with better performance and robustness against modeling uncertainties and various disturbances. Also, the obtained condition can be rewritten as parameterized linear matrix inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.