• Title/Summary/Keyword: 구면굴절력

Search Result 89, Processing Time 0.026 seconds

Evaluation of Reliability for Combined Refractive Power of Lenses in an Automatic Phoropter (자동포롭터 내부렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2015
  • Purpose: To evaluate the reliability of refractive power by comparing the marked refractive power in an automatic phoropter and actually measured spherical/cylindrical refractive power. Methods: Actual refractive power of minus spherical lens and cylindrical lens in an automatic phoropter was measured by a manual lensmeter and compared with the accuracy of marked refractive power. Furthermore, combined refractive power and spherical equivalent refractive power of two overlapped lenses were compared and evaluated with the refractive power of trial lens. Results: An error of 0.125 D and more against the marked degree was observed in 70.6% of spherical refractive power of spherical lens which is built in phoropter, and the higher error was shown with increasing refractive power. Single cylindrical refractive power of cylindrical lens is almost equivalent to the marked degree. Combined spherical refractive power was equivalent to spherical refractive power of single lens when spherical lens and cylindrical lens were overlapped in a phoropter. Thus, there was no change in spherical refractive power by lens overlapping. However, there was a great difference, which suggest the effect induced by overlapping between cylindrical refractive power and the marked degree when spherical lens and cylindrical lens were overlapped. Spherical equivalent refractive power measured by using a phoropter was lower than that estimated by trial glasses frame and marked degree. The difference was bigger with higher refractive power. Conclusions: When assessment of visual acuity is made by using an automatic phoropter for high myopes or myopic astigmatism, some difference against the marked degree may be produced and they may be overcorrected which suggests that improvement is required.

A Study on the Refractive Power of School Children Who are Classified in Low Income Family (저소득층 분류에 따른 학동기 아동의 굴절력에 관한 연구)

  • Lee, Wan-Seok;Ye, Ki-Hun;Shin, Bum-Joo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.373-383
    • /
    • 2013
  • Purpose: In this study, we analyzed refractive power of school children in low income family. Methods: We have done a comparative analysis with 112 subjects of low-income of 17 elementary schools in the Yeongcheon area and low-income children less than -6 D of refractive errors from the Korean National Health and Nutrition Examination Survey Report 2010. Results: Spherical equivalent (SE) with low-income group of nation was -1.99 D for right eye and -1.81 D for left eye, while high income group of nation showed -1.26 D and -1.21 D for right eye and left eye respectively. The SE with low income group in Yeongcheon area was -1.85 D for right eye and -1.81 D for left eye. The SE with orphan was -2.75 D and -2.42 D. Single parent family was -2.10 D and -1.96 D, and two parent family was -1.75 D and -1.73. Conclusions: The lack of attention to children eye care may be one of cause for myopia, so the role of the parents and teacher is very important. However, limited role of parents to children due to low income, it is necessary to provide an institutional strategy and social interest to prevent children vision' in low income family.

Study on Evaluation of Refraction Measurement for Clinical Application (임상적 적용을 위한 굴절력 측정의 평가에 관한 연구)

  • Yoo, Jong-Sook;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 2006
  • Clinical evaluation of the Closed-view autorefractor and Open-view autorefractor was performed to examine validity and repeatability compared with subjective refraction. Measurements of refractive error were performed on 126 eyes of 65 subjects (aged $26{\pm}7.5$ years) subjectively noncycloplegic. Intersession repeatability of the Closed-view and Open-view were also assessed on all 65 subjects together with Intersession repeatability on 7 to 14 days intervals. Spherical powers and spherical equivalent values of subjective refraction and autorefractions by Closed-view and Open-view were analyzed by paired T-test. The mean spherical powers of subjective refraction, Closed-view and Open-view were determined to be $-2.125{\pm}2.155D$, $-2.146{\pm}1.907D$, $-2.117{\pm}2.121D$, respectively. The mean spherical equivalent values of subjective refraction, Closed-view and Open-view were determined to be $-2.362{\pm}2.204D$, $-2.391{\pm}1.967D$, $-2.366{\pm}2.162D$, respectively. The results showed that the refractive errors as measured by the Closed-view and Open-view were found to be similar to the subjective refraction in all components.

  • PDF

Study on the Analysis of Corneal Variation by Refractive Error (굴절이상에 의한 각막 변화도 분석에 관한 연구)

  • Lee, Hae-Jung;Oh, Hyun-Jin;Jung, Mi-A
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.485-490
    • /
    • 2014
  • The purpose of this Study investigated corneal power, corneal astigmatism and corneal axis according to spherical equivalent of refractive error. We measured spherical equivalent, corneal power and corneal astigmatism in 100 subjects from January 2014 to July 2014. Measured spherical equivalent of refractive error were $-3.01{\pm}3.79D$, corneal power of $43.79{\pm}1.60D$ and corneal astigmatism of $-1.17{\pm}0.79D$ respectively. Prevalence of spherical equivalent of refractive error were as follows : myopes (61%), emmetropes (22%), hyperopes(17%). Corneal astigmatism of refractive error greater than +0.75D was 63% and prevalence of corneal astigmatism were as follows : with-the-rlue astigmatism (84.13%), against-the-rule astigmatism(9.52%) respectively. Corneal power by spherical equivalent increased from hyperopia to myopia. Between spherical equivalent of refractive error and the mean corneal power was significant correlation(r=-0.25, p=0.01). A correlation were found between corneal power and spherical equivalent of refractive error in adults. They have the highest distribution of prevalence myopia among the refractive error. When the refractive error was increased, we found that corneal power was steeper. It is recognized that this can be refractive error factor and correct visual function is considered.

The Evaluation of Reliability for the Combined Refractive Power of Overlapping Trial Lenses (중첩된 시험렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.263-276
    • /
    • 2015
  • Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.

Study on Clinical Assessment and Reliability Analysis of Measurement with Diverse Autorefractors (검사기기에 따른 굴절력 측정의 임상적 평가 및 신뢰도에 관한 연구)

  • Kim, Tae-Hun;Kwon, Young-Seok;Ye, Ki-Hun;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • For this study, Clinical evaluation of the diverse Autorefractors was performed to examine validity and repeatability compared with subjective refraction. Measurements of refractive error were performed on 212 eyes of 106 subjects subjectivly noncycloplegic. Intersession repeatability of the Autorefractors were also assessed on all 106 subjects together with intersession repeatability on 7 to 14 days intervals. Spherical powers of subjective refraction and autorefractions by Autorefractors were analyzed by paired T-test.

  • PDF

The Dioptric Differences between Both Eyes by Dioptric Power Matrix (굴절력 매트릭스에 의한 양안의 굴절력 차이)

  • Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • This study was performed to survey dioptric differences between the refractive states of both eyes from 1,100 patients who were given their prescriptions in spectacles. The differences were obtained by using dioptric power matrix. The prevalence of anisometropia was 96.9% for isoanisometropia, 2.9% for simple anisometropia, 0.2% for antimetropia. Spherical anisometropia was 22.1%, cylindrical anisometropia was 10.9%, spherocylindrical anisometropia was 46.5%, and no anisometropia was 20.5%. Anisometropia was more in thirties and forties than in other groups. In distribution of only spherical diopter differences, 76.1% were less than 0.50D, 91.7% were under 1.00D, only 2.5% were over 2.00D. In cylindrical diopter differences alone, 93.3% had under 0.50D, 1.7% had more than 1.00D. In spherocylindrical anisometropia, 52.8% were less than 0.50D, 78.6% were under 1.00D, 5.1% were more than 2.00D. In axis differences, with-the-rule type was 29.9%, against-the-rule type was 29.8%, oblique type was 40.3%.

  • PDF

Comparative Analysis of Refractive Power on Trial Case Lenses (검안렌즈의 굴절력 비교 분석)

  • Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2012
  • Purpose: In this study, the distribution and differences in refractive powers on trial case lenses were investigated. Methods: We measured refractive powers at optical center and periphery using 4 trial case lens sets. According to international standards, the distribution and uniformity in refractive powers were investigated. Results: The lens shapes were different in different kinds of trial case lenses and some of lenses were out of tolerance according international standards. In some cases, the power differences were found between front and back side as well as between optical center and peripheral regions and also the cylindrical power on spherical lens and spherical power on the cylindrical lens were measured. Conclusions: Trial case lens are used to assess the refractive error, therefore, more precise control of the manufacturing process for trial case lenses and more thorough quality control will be required to offer an accurate vision test. More careful attention in using trial case lens is also required.

Effect of Accommodation Control by Applying Fogging Method in Subjective Refraction and Auto-Refraction in Ametropia (비정시안에서 운무적용에 따른 자각적 및 자동굴절검사의 조절제어효과)

  • Lee, Kang-Cheon;Kim, Sang-Yeob;Cho, Hyun Gug;Yu, Dong-Sik;Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Purpose: To analyze the effect of accommodative control and change values between subjective refraction (SR) and auto-refraction (AR) according to application of fogging after accommodative stimulation depending on ametropia type. Methods: Myopic ametropia 76 eyes and hyperopic ametropia 52 eyes participated for this study. SR and AR values measured by three test conditions (Before accommodative stimulation; Before AS, After accommodative stimulation; After AS, and After application of fogging; After AF) were compared, respectively. Results: In myopic eyes, (-)spherical power by SR and AR in After AS test was significantly increased as compared to Before AS test, (-)spherical power in After AF test was decreased to the level of Before AS test. The differences of spherical power between SR and AR were highly measured by SR in After AS test, and highly measured by AR in After AF test, respectively. In hyperopic eyes, (+)spherical power of SR significantly decreased in After AS test compared to Before AS test, more (+)spherical power was detected in After AF test compared to Before AS test. (+)spherical power of AR have no significant difference between Before AS and After AS test, but more (+)spherical power was detected in After AF test compared to Before AS test. The differences of (+)spherical power between SR and AR were significant in all test conditions. Among 52 eyes which were measured as hyperopic ametropia, 7 eyes were measured as myopia by SR in After AS test. In case of AR, 25 eyes among 52 eyes were mismeasured as myopia of ranges from -0.25 D to -1.25 D in Before AS test, 26 eyes in After AS test, and 19 eyes in After AF test were mismeasured as myopia of ranges from -0.25 D to -1.25 D. Conclusions: Regardless of ametropia type, accommodative control by After AF test was effective on both refraction process. However, in auto-refraction for hyperopic eyes, the misdetermined proportion of refractive error's type was high due to consistent accommodative intervention in all test condition. Therefore, in order to obtain an accurate value of refractive errors, full correction should be determined by subjective refraction process after fogging method.

Repeatability Assessment of Autorefractor and Accuracy Analysis of Refraction Measurements by Fourier Analysis (자동굴절검사기의 신뢰성 평가 및 Fourier analysis에 의한 정확도 분석)

  • Kim, Tae-Hun;Ye, Ki-Hun;Kim, Jae-Kwang;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • Purpose: We have evaluated both the reliability and accuracy of refractive measurement from autorefractor by comparing with subjective refraction data. Methods: Measurements of refractive error were performed on 198 eyes of 99 subjects in noncycloplegic condition. Also we analyzed refraction results and evaluated repeatability and accuracy of subjective refraction and autorefraction. Furthermore we analyzed accuracy of autorefractor by Fourier analysis. Results: Reliability coefficient of the autorefraction for the right eye were determined to by 0.993, 0.974 and 0.925 respectively, in the spherical, cylinderical component and cylinderical Axis. Also, the reliability coefficient of the autorefraction for the left eye were found to be 0.991, 0.948 and 0.886, respectively, in the spherical, cylinderical component and cylinderical Axis. From the Fourier analysis no statistically significant differences in $J_{0}$ component were found between the auto and subjective refraction measurements (p>0.05) whereas difference of refractive power of $J_{45}$ component when compared with the subjective refraction were -0.019, -0.164. Conclusions: We conclude that autorefractormeter can be effectively used to measure the refractive power within the error limits.

  • PDF