DOI QR코드

DOI QR Code

Effect of Accommodation Control by Applying Fogging Method in Subjective Refraction and Auto-Refraction in Ametropia

비정시안에서 운무적용에 따른 자각적 및 자동굴절검사의 조절제어효과

  • Received : 2016.05.04
  • Accepted : 2016.06.09
  • Published : 2016.06.30

Abstract

Purpose: To analyze the effect of accommodative control and change values between subjective refraction (SR) and auto-refraction (AR) according to application of fogging after accommodative stimulation depending on ametropia type. Methods: Myopic ametropia 76 eyes and hyperopic ametropia 52 eyes participated for this study. SR and AR values measured by three test conditions (Before accommodative stimulation; Before AS, After accommodative stimulation; After AS, and After application of fogging; After AF) were compared, respectively. Results: In myopic eyes, (-)spherical power by SR and AR in After AS test was significantly increased as compared to Before AS test, (-)spherical power in After AF test was decreased to the level of Before AS test. The differences of spherical power between SR and AR were highly measured by SR in After AS test, and highly measured by AR in After AF test, respectively. In hyperopic eyes, (+)spherical power of SR significantly decreased in After AS test compared to Before AS test, more (+)spherical power was detected in After AF test compared to Before AS test. (+)spherical power of AR have no significant difference between Before AS and After AS test, but more (+)spherical power was detected in After AF test compared to Before AS test. The differences of (+)spherical power between SR and AR were significant in all test conditions. Among 52 eyes which were measured as hyperopic ametropia, 7 eyes were measured as myopia by SR in After AS test. In case of AR, 25 eyes among 52 eyes were mismeasured as myopia of ranges from -0.25 D to -1.25 D in Before AS test, 26 eyes in After AS test, and 19 eyes in After AF test were mismeasured as myopia of ranges from -0.25 D to -1.25 D. Conclusions: Regardless of ametropia type, accommodative control by After AF test was effective on both refraction process. However, in auto-refraction for hyperopic eyes, the misdetermined proportion of refractive error's type was high due to consistent accommodative intervention in all test condition. Therefore, in order to obtain an accurate value of refractive errors, full correction should be determined by subjective refraction process after fogging method.

목적: 비정시의 유형별 조절자극 후 운무적용에 따른 자각적 및 자동굴절검사값의 변화와 조절제어효과를 분석하고자 하였다. 방법: 근시성 비정시 76안과 원시성 비정시 52안을 대상으로 하였다. 세 가지 검사조건에서 측정된(조절자극 전, 조절자극 후, 운무적용 후) 자각적 및 자동굴절검사값을 각각 비교하였다. 결과: 근시성 비정시안에서 자각적 및 자동굴절검사의 (-)구면굴절력값은 조절자극 전과 비교해 조절자극 후에서 유의하게 증가하였고, 운무적용 후에서는 조절자극 전의 수준으로 감소하였다. 자각적 및 자동굴절검사간의 (-)구면굴절력차이는 조절자극 후에서 자각적굴절검사값이 높았고, 운무적용 후 검사에서는 자동굴절검사값이 높게 측정되었다. 원시성 비정시안에서 자각적굴절검사의 (+)구면굴절력값은 조절 전과 비교해 조절자극 후에서 유의하게 감소하였고, 운무적용 후에서는 조절자극 전보다 더 높은 (+)구면굴절력이 검출되었다. 자동굴절검사의 (+)구면굴절력값은 조절자극 전 후간의 유의한 차이는 없었고, 운무적용 후에서는 조절자극 전보다 더 높은 (+)구면굴절력이 검출되었다. 자각적 및 자동굴절검사간의 구면굴절력은 모든 검사조건에서 유의한 차이를 보였다. 원시성 비정시 52안 중 조절자극 후 자각적굴절검사에서 7안이 근시로 측정되었다. 자동굴절검사의 경우, 원시성 비정시 52안 중 조절자극 전 검사에서 25안이 -0.25 D ~ -1.25 D 범위의 근시로 나타났고, 조절자극 후 검사에서는 26안이, 운무적용 후 검사에서도 19안이 -0.25 D ~ -1.25 D 범위의 근시로 측정되었다. 결론: 비정시의 유형에 상관없이 운무를 통한 조절제어는 두 굴절검사과정 모두에서 효과적이었다. 하지만 원시안에서 자동굴절검사는 모든 검사조건에서 일정량의 조절이 개입된 상태로 측정되어 굴절이상의 분류가 다르게 검출되는 비율이 높았다. 따라서 정확한 굴절이상도를 검출하기 위해서는 운무과정을 실시한 후 반드시 자각적굴절검사과정을 통해 완전교정값을 결정해야 할 것이다.

Keywords

References

  1. Moon NJ, Kim JC, Koo BS. The study on the necessity of cycloplegic refraction in school children. J Korean Ophthalmol Soc. 1988;29(3):377-385.
  2. Kim YS, An HS, and Jin YH. A study about the accuracy of automated refraction. J Korean Ophthalmol Soc. 1995;36(12):2207-2212.
  3. McBrien NA, Millodot M. Clinical evaluation of the Canon Autoref R-1. Am J Optom Physiol Opt. 1985; 62(11):786-792. https://doi.org/10.1097/00006324-198511000-00011
  4. Mallen EA, Wolffsohn JS, Gilmartin B, Tsujimura S. Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults. Ophthalmic Physiol Opt. 2001;21(2):101-107. https://doi.org/10.1016/S0275-5408(00)00049-1
  5. Wesemann W, Rassow B. Automatic infrared refractors-a comparative study. Am J Optom Physiol Opt. 1987;64(8): 627-638. https://doi.org/10.1097/00006324-198708000-00011
  6. Joubert L, Harris WF. Excess of autorefraction over subjective refraction: dependence on age. Optom Vis Sci. 1997;74(6):439-444. https://doi.org/10.1097/00006324-199706000-00029
  7. Lee JW, Lee KS, Hong HK. Research of difference between the refractive powers by autorefractometer and the prescription using phoropter. J Korean Ophthalmic Opt Soc. 2014;19(2):231-237. https://doi.org/10.14479/jkoos.2014.19.2.231
  8. Choong YF, Chen AH, and Goh PP. A comparison of autorefraction and subjective refraction with and without cycloplegia in primary school children. Am J Ophthalmol. 2006;142(1):68-74. https://doi.org/10.1016/j.ajo.2006.01.084
  9. Chat SW, Edwards MH. Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in children. Ophthalmic Physiol Opt. 2001;21(2):87-100. https://doi.org/10.1016/S0275-5408(00)00048-X
  10. Steele G, Ireland D, Block S. Cycloplegic autorefraction results in pre-school children using the Nikon Retinomax Plus and the Welch Allyn SureSight. Optom Vis Sci. 2003;80(8):573-577. https://doi.org/10.1097/00006324-200308000-00010
  11. Salvesen S, Kohler M. Automated refraction. A comparative study of automated refraction with the Nidek AR-1000 autorefractor and retinoscopy. Acta Ophthalmol (Copenh). 1991;69(3):342-346. https://doi.org/10.1111/j.1755-3768.1991.tb04825.x
  12. Cordonnier M, Dramaix M, Kallay O, de Bideran M. How accurate is the hand-held refractor Retinomax(R) in measuring cycloplegic refraction: a further evaluation. Strabismus. 1998;6(3):133-142. https://doi.org/10.1076/stra.6.3.133.661
  13. Kinge B, Midelfart A, Jacobsen G. Clinical evaluation of the Allergan Humphrey 500 autorefractor and the Nidek AR-1000 autorefractor. Br J Ophthalmol. 1996;80(1):35-39. https://doi.org/10.1136/bjo.80.1.35
  14. Benjamin WJ. Borish's clinical refraction, 2nd Ed. St. Louis: Butterworth-Heinemann. 2006;798-799.
  15. Kang HS. Introduction to Optometry, 6th Ed. Seoul: Shinkwang publishing company. 2011;236.
  16. Owens DA, Wolf-Kelly K. Near work, visual fatigue, and variations of oculomotor tonus. Invest Ophthalmol Vis Sci. 1987;28(4):743-749.
  17. Ehrlich DL. Near vision stress: vergence adaptation and accommodative fatigue. Ophthalmic Physiol Opt. 1987; 7(4):353-357. https://doi.org/10.1111/j.1475-1313.1987.tb00760.x
  18. Oh SY. A study on refraction by fogging and unfogging method for hyperoic refractive errors. MS Thesis. Konyang University, Daejeon. 2014;27-51.
  19. Gallagher JT, Citek K. A Badal optical stimulator for the Canon Autoref R-1 optometer. Optom Vis Sci. 1995;72(4): 276-278. https://doi.org/10.1097/00006324-199504000-00009
  20. Rosenfield M, Gilmartin B. Effect of target proximity on the open-loop accommodative response. Optom Vis Sci. 1990;67(2):74-79. https://doi.org/10.1097/00006324-199002000-00002
  21. Yang SW, Lee NY, Kim SY. The effect of cycloplegia on vision and stereopsis: comparison between before and after cycloplegia. J Korean Ophthalmol Soc. 2006;47(9): 1454-1458.

Cited by

  1. Correlation between the Two Tests and Changes in Measured Values According to Accommodative Stimulation and Fogging in the Subjective and Auto-Refraction vol.22, pp.2, 2017, https://doi.org/10.14479/jkoos.2017.22.2.175