• Title/Summary/Keyword: 구간 통행시간정보

Search Result 107, Processing Time 0.028 seconds

Evaluation of Travel Time Prediction Reliability on Highway Using DSRC Data (DSRC 기반 고속도로 통행 소요시간 예측정보 신뢰성 평가)

  • Han, Daechul;Kim, Joohyon;Kim, Seoungbum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.86-98
    • /
    • 2018
  • Since 2015, the Korea Expressway Corporation has provided predicted travel time information, which is reproduced from DSRC systems over the extended expressway network in Korea. When it is open for public information, it helps travelers decide optimal routes while minimizing traffic congestions and travel cost. Although, sutiable evaluations to investigate the reliability of travel time forecast information have not been conducted so far. First of all, this study seeks to find out a measure of effectiveness to evaluate the reliability of travel time forecast via various literatures. Secondly, using the performance measurement, this study evaluates concurrent travel time forecast information in highway quantitatively and examines the forecast error by exploratory data analysis. It appears that most of highway lines provided reliable forecast information. However, we found significant over/under-forecast on a few links within several long lines and it turns out that such minor errors reduce overall reliability in travel time forecast of the corresponding highway lines. This study would help to build a priority for quality control of the travel time forecast information system, and highlight the importance of performing periodic and sustainable management for travel time forecast information.

Development of Bus Arrival Time Estimation Model by Unit of Route Group (노선그룹단위별 버스도착시간 추정모형 연구)

  • No, Chang-Gyun;Kim, Won-Gil;Son, Bong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2010
  • The convenient techniques for predicting the bus arrival time have used the data obtained from the buses belong to the same company only. Consequently, the conventional techniques have often failed to predict the bus arrival time at the downstream bus stops due to the lack of the data during congestion time period. The primary objective of this study is to overcome the weakness of the conventional techniques. The estimation model developed based on the data obtained from Bus Information System(BIS) and Bus management System(BMS). The proposed model predicts the bus arrival time at bus stops by using the data of all buses travelling same roadway section during the same time period. In the tests, the proposed model had a good accuracy of predicting the bus arrival time at the bus stops in terms of statistical measurements (e.g., root mean square error). Overall, the empirical results were very encouraging: the model maintains a prediction job during the morning and evening peak periods and delivers excellent results for the severely congested roadways that are of the most practical interest.

A Travel Time Estimation Algorithm using Transit GPS Probe Data (Transit GPS Data를 이용한 링크통행시간 추정 알고리즘 개발)

  • Choi, Keechoo;Hong, Won-Pyo;Choi, Yoon-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.739-746
    • /
    • 2006
  • The bus probe-based link travel times were more readily available due to bus' fixed route schedule and it was different from that of taxi-based one in its value for the same link. At the same time, the bus-based one showed less accurate information than the taxi-based link travel time, in terms of reliability expressed by 1-RMSE(%) measure. The purpose of this thesis is to develop a heuristic algorithm for mixing both sources-based link travel times. The algorithm used both real-time and historical profile travel times. Real-time source used 4 consecutive periods' average and historical source used average value of link travel time for various congestion levels. The algorithm was evaluated for Seoul urban arterial network 3 corridors and 20 links. The results based on the developed algorithm were superior than the mere fusion based link travel times and the reliability amounted up to 71.45%. Some limitation and future research agenda have also been discussed.

A Study on the Optimal Aggregation Interval for Travel Time Estimation on the Rural Arterial Interrupted Traffic flow (지방부 간선도로 단속류 통행시간 추정을 위한 적정 집락간격 결정에 관한 연구)

  • Lim Houng-Seak;Lee Seung-Hwan;Lee Hyun-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.129-140
    • /
    • 2004
  • In this paper, we conduct the research about optimal aggregation interval of travel time data on interrupted traffic flow and verify the reliability of AVI collected data by using car plate matching method in RTMS for systematic collection and analysis of link travel time data on interrupted traffic flow rural arterial. We perform Kolmosorov-Smirnov test on AVT collected sample data and on entire population data, and conclude that the sample data does not represent pure random sampling and hence includes sample collection error. We suggest that additional review is necessary to investigate the effectiveness of AVI collected sample data as link representative data. We also develop statistical model by applying two estimation techniques namely point estimation and interval estimation for calculating optimal aggregation interval. We have implemented our model and determine that point estimate is preferable over interval estimate for exactly selecting and deciding optimal aggregation interval. Our final conclusion is that 5-minute aggregation interval is optimal to estimate travel time in RTMS, as is currently being used our investigation is based on AVI data collected from Yang-ji to Yong-in $42^{nd}$ National road.

  • PDF

시뮬레이션을 기반으로 한 지하철 혼잡도 개선에 관한 연구

  • Kim, Sang-Pil;Yu, Jae-Gon;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.71-73
    • /
    • 2015
  • 2009년 7월 개화에서 신논현까지 서울 지하철 9호선이 개통했다. 2010년 9호선 일평균 통행량은 예측 통행량 대비 97%수준이었으나, 2013년은 110%를 달성했다. 2015년 3월 2단계구간이 개통되어 평일 평균 이용객이 15만명 정도가 더 늘어났다. 국회 자료에 따르면, 출근시간 염창역에서 당산역까지의 혼잡도가 237%로 나타났다. 이는 다른 지하철 혼잡도 2배 뛰어넘는 수치이다. 당산역에서 여의도역(234%), 여의도역에서 노량진역(212%), 노량진역에서 동작역(216%)으로 기록이 될 만큼 특정 구간의 혼잡도가 높게 나타났고 급행노선을 선호하는 인원이 많아 시간이 지날수록 정체현상이 가중되고 있다. 따라서 본 연구는 혼잡도의 주 원인인 정체현상을 감소시키고 여객 수송율을 증가시키기 위해 기존의 급행 프로세스를 변경하는 방안을 제시한다. 여기에 적용된 연구방법은 혼잡도 수준을 낮추기 위해 필요한 프로세스 설정하고 아레나 시뮬레이션 프로그램 분석을 통해 본 연구에서 제시한 방안에 대해 검증한다. 본 연구에서 제안한 방식을 통해 지하철의 혼잡도 해소에 도움을 줄 수 있을 것이다.

  • PDF

Development of an incident impact analysis system using short-term traffic forecasts (단기예측기법을 이용한 연속류 유고영향 분석시스템)

  • Yu, Jeong-Whon;Kim, Ji-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Predictive information on the freeway incident impacts can be a critical criterion in selecting travel options for users and in operating transportation system for operators. Provided properly, users can select time-effective route and operators can effectively run the system efficiently. In this study, a model is proposed to predict freeway incident impacts. The predictive model for incident impacts is based on short-term prediction. The proposed models are examined using MARE. The analysis results suggest that the models are accurate enough to be deployed in a real-world. The development of microscopic models to predict incident effects is expected to help minimize traffic delay and mitigate related social costs.

A dynamic Shortest Path Finding with Forecasting Result of Traffic Flow (교통흐름 예측 결과틀 적용한 동적 최단 경로 탐색)

  • Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.988-995
    • /
    • 2009
  • One of the most popular services of Telematics is a shortest path finding from a starting point to a destination. In this paper, a dynamic shortest path finding system with forecasting result of traffic flow in the future was developed and various experiments to verify the performance of our system using real-time traffic information has been conducted. Traffic forecasting has been done by a prediction system using Bayesian network. It searched a dynamic shortest path, a static shortest path and an accumulated shortest path for the same starting point and destination and calculated their travel time to compare with one of its real shortest path. From the experiment, over 75%, the travel time of dynamic shortest paths is the closest to one of their real shortest paths than one of static shortest paths and accumulated shortest paths. Therefore, it is proved that finding a dynamic shortest path by applying traffic flows in the future for intermediated intersections can give more accurate traffic information and improve the quality of services of Telematics than finding a static shortest path applying by traffic flows of the starting time for intermediated intersections.

A Methodology for Estimating Section Travel Times Using Individual Vehicle Features (개별차량의 고유특성을 이용한 구간통행시간 산출기법 개발)

  • O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2005
  • This study if the first trial toward realizing a new methodology for vehicle re-identification based on heterogeneous sensor systems. A major interest of the author is how to effectively utilize information obtained from different sensors to derive accurate and reliable section travel times. The 'blade' sensor that is a newly developed sensor for capturing vehicle wheel information and the existing square loop sensor are employed to extract the inputs of the proposed vehicle re-identification algorithm. The fundamental idea of the algorithm developed in this study, which is so called 'anonumous vehicle re-identification,' it to match vehicle features obtained from both sensors. The results of the algorithm evaluation reveal that the proposed methodology could be successfully implemented in the field. The proposed methodology would be an invaluable tool for operating agencies in support of traffic monitoring systems and traveler information systems.

The Consideration on Calculation of Optimal Travel Speeds based on Analysis of AVI Data (AVI 수집 자료 분석에 근거한 최적 통행속도 산출에 관한 고찰)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • This study aims to calculate optimal travel speeds based on analysis of the AVI data collected in the uninterrupted traffic flow, and the results are as follows. Firstly, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. Secondly, there were differences among type 1(passenger automobiles) & type 2(automobiles for passengers and freight) and type 4(special automobiles) in the non-congestion section. thus it was revealed that there is a necessity to remove type 4(special automobiles) when calculating the sectional travel speeds. Thirdly, Based on the results of these, the optimal outlier removal procedures were applied to this study. As a result, it showed that the MAPE was between 0.3% and 2.0% and RMSE was between 0.3 and 2.3 which are very similar figures to the actual average traffic speed. Also, the minimum sample size was satisfied at the confidence level of 95%. The result of study is expected to serve as a useful basis for the local government to build the AVI. In the future, it will be necessary to study to integrate AVI data and other data for more accurate traffic information.