• Title/Summary/Keyword: 교환결합이중박막

Search Result 11, Processing Time 0.025 seconds

Study on Exchange Coupling in Bilayer Systems using Co-Based Multilayer Thin Films (Co계 다층박막을 이용한 이중막에서 Direct Overwriting을 위한 교환결합 연구)

  • 문기석;최석봉;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 1996
  • Co/Pd와 Co/Pd 다층박막으로 구성된 이중막 시스템에서 direct overwriting을 구현하는데 필수적인 교환결합 (exchange coupling)에 대하여 연구하였다. Co/Pd 및 Co/Pd 다층박막을 수직자성을 가지도록 하기 위하여 Co층의 두께를 4- .angs. 이하로 하여 전자빔 증착법으로 제작한 후 x-ray 회절 실험으로 구조 분석을 하였고, Kerr spectrometer, VSM을 사용하여 자기 및 자기광학적 성질을 조사하였다. 기억막과 기준막으로 구성된 이중막에서는 exchange coupling이 커서 자화반전이 두 박막에서 동시에 일어나며, 두 박막사이에 적당한 두께의 비자성 사이막(non-magnetic spacer)이 존재하는 경우에는 두 박막사이의 교환결합의 크기가 줄어들어서 두 박막의 자화반전이 분리되어 계단식 자화곡선이 생겼다. 또 비자성 사이막이 두꺼우면 두 박막사이의 교환결합이 사라짐이 관찰 되었다. 두 박막사이의 교환결합은 자구 기록 실험을 통해서도 그 존재를 확인할 수 있었다.

  • PDF

Magnetic Domain Walls at the Edges of Patterned NiO/NiFe Bilayers (패턴된 이중박막의 자구벽 특성조사)

  • Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • The magnetic domain walls at the edges of a large patterned and exchanged-biased NiO(10-60 nm)/NiFe(10 nm) bilayers and their motions with applied field were investigated by magnetic force microscopy. Three kinds of domain walls, namely, head-to-head zig-zag and tail-to-tail zig-zag Bloch walls and straight Neel walls were found at specific edges of the unidirectional biased NiO(30 nm)/NiFe(10 nm) bilayer having the exchange biasing field (H$\sub$ex/) of 21 Oe. No walls were observed for the strong exchange-biased bilayer (60 nm NiO, H$\sub$ex/ = 75 Oe), while the amplitude of the zig-zag domain increased with decreasing exchange biasing. This may be explained by mutual restraint between H$\sub$ex/ and the demagnetization field of edge. We similarly investigated the magnetization reversal process, the subsequent motion of the walls and identified the pinning and nucleation sites during reversal.

A Study on Exchange bias of Seed layer Etching on NiFe/FeMn/NiFe Multilayers (NiFe/FeMn/NiFe 다층박막의 씨앗층 에칭에 의한 교환 바이어스에 대한 연구)

  • 임재준;윤상민;호영강;이영우;김철기;김종오
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.221-221
    • /
    • 2003
  • 본 연구에서는 스핀밸브 다층박막에서 교환 바이어스에 영향을 끼치는 요인 중 하나인 강자성층과 반강자성층사이의 접합 계면에서의 표면 거칠기 [1,2]를 줄이기 위해 현재 반도체 공정에 사용되고 있는 이온빔 에칭 장비를 사용하여 스핀 밸브 다층박막의 씨앗층 에칭에 따른 교환 바이어스를 알아보고자 하였다. 스핀밸브 구조는 강자성층/비자성층/강자성층의 기본구조를 갖는데 이중 하나의 강자성층의 스핀방향이 반강자성층에 의해 고정되는 구조[3]로써 이러한 고정 효과를 교환 바이어스(exchange bias)라 부른다. 교환 바이어스(exchange bias)현상은 강자성과 반강자성의 접합계면에서 강한 상호 교환결합력에 의해 나타나는 현상으로 이러한 교환 바이어스 특성은 하드드라이브의 고밀도 자기헤드소자 및 비휘발성 자기 메모리소자에 응용되어 기존의 자기저항 소자의 특성을 크게 향상시킬 수 있게 되었다.

  • PDF

Magnetoresistance of Single-type and Dual-type GMR-SV Multilayer Thin Films with Top and Bottom IrMn Layer (상부와 하부 IrMn층을 갖는 단일구조 및 이중구조 거대자기저항-스핀밸브 다층박막의 자기적 특성 비교 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.115-122
    • /
    • 2017
  • The antiferromagnet IrMn based four different GMR-SV multilayers on Corning glass were prepared by using ion beam deposition and DC magnetron sputtering system. The magnetoresistance (MR) properties for single-type and dual-type GMR-SV multilayer films were investigated through the measured major and minor MR curves. The exchange bias coupling field ($H_{ex}$) and coercivity ($H_c$) of pinned layer, the $H_c$ and interlayer exchange coupling field ($H_{int}$) of free layer for the dual-type structure GMR-SV multilayer films consisted of top IrMn layer were 410 Oe, 60 Oe, 1.6 Oe, and 7.0 Oe, respectively. The minor MR curve of two free layers was performed the squarelike feature having a MR ratio of 8.7 % as the sum of 3.7 % and 5.0 %. The value of average magnetic field sensitivity (MS) was maintained at 2.0 %/Oe. Also, the magnetoresistance properties of the single-type and dual-type structure GMR-SV multilayer films consisted of bottom IrMn layer were decreased more than those of top IrMn layer. Two antiparallel states of magnetization spin arrays of the pinned and free layers in the dual-type GMR-SV multilayer films occurred the maximum MR value by the effect of spin dependence scattering.

Anisotropy Effect of Exchange Bias Coupling by Unidirectional Deposition Field of NiFe/FeMn Bilayer (NiFe/FeMn 이중박막의 증착시 자기장에 의한 교환결합력 이방성 효과)

  • Park, Young-Seok;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.180-184
    • /
    • 2008
  • The relation of ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration has been investigated for variously angles of unidirectional deposition magnetic field of FeMn layer in Corning glas/Ta(5 nm)/NiFe(7 nm)/FeMn(25 nm)/ Ta(5 nm) multilayer prepared by ion beam deposition. Three unidirectional deposition angles of FeMn layer are $0^{\circ},\;45^{\circ}$, and $90^{\circ}$, respectively. The exchange bias field ($H_{ex}$) obtained from the measuring easy axis MR loop was decreased to 40 Oe in deposition angle of $45^{\circ}$, and to 0 Oe in the angle of $90^{\circ}$. One other side hand, $H_{ex}$ obtained from the measuring hard axis MR loop was increased to 35 Oe in deposition angle of $45^{\circ}$, and to 79 Oe in the angle of $90^{\circ}$. Although the difference of uniderectional axis between ferromagnet NiFe and antiferromagnet FeMn was 90o, the strong antiferromagnetic dipole moment of FeMn caused to rotate the weak ferromagnetic dipole moment of NiFe in the interface. This result implies that one of origins for exchange coupling mechanism depends on the effect of magnetic field angle during deposition of antiferromgnet FeMn layer.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Magnetoresistive heads with dual exchange bias using $NiFe/TbCo/Si_3N_4$ thin films (자기 저항 헤드의 이중 자기 교환 바이어스를 위한 $NiFe/TbCo/Si_3N_4$ 박막제조)

  • 김영채;오장근;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 1994
  • $NiFe/TbCo/Si_3N_4$ thin films were fabricated, which can be employed as dualOongitudinal and transverse) biased magnetoresistive elements utilizing surface magnetic exchange at the interface of NiFe/TbCo films. When Tb area percent was 36 % and substrate bias was not applied, magnetic exchange fields of 100~180 Oe were obtained. The thicknesses of NiFe, TbCo and $Si_3N_4$(Protective layer) were $470\;{\AA},\;2400\;{\AA}\;and\;600\;{\AA}$, respectively. Magnetoresistance ratio of 1.45 % was obtained using NiFe films fabricated with 1000 W power and 2.5 mTorr of Ar pressure. The MR ratio of microstructured elements was reduced to 1.31 % and the MR response curves were shown not to saturate due to demagnetizing fields of the elements. When elements were fabricated with $36^{\circ}$ of misalignment with respect to the exchange field direction using films having 150 Oe exchange field, MR response curve was shifted by 85 Oe, and the operating point of the device shifted to the linear region of the response. Also, the Barkhausen noise was eiminated due to longitudinal bias field originating from the exchange field.

  • PDF

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers (강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.204-209
    • /
    • 2012
  • We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.

Local Magnetization Reversal of FeMn/NiFe Films Using Laser Annealing (Laser 열처리를 이용한 FeMn/NiFe 박막의 자화 반전)

  • Choi, S.D.;Jin, D.H.;Kim, S.W.;Kim, Y.S.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.228-231
    • /
    • 2004
  • We have studied local magnetization reversal and magnetic properties induced by Laser annealing method in the strip-patterned Ta/NiFe/FeMn/Ta and Ta/NiFe/FeMn/NiFe/Ta multilayers fabricated by ion-beam deposition. The films were exposed to the emission of the DPSS (Diode Pumped Solid State, Nd:YAG) laser under 600 G. The laser beam intensity increased up to 440 mW. When the laser illuminated the patterned film with the power of above 200 m W, the intensity of MR peak located in +87 Oe shrunk. A new MR peak was generated at -63 Oe. When the laser power is 400 mW, the location of positive MR peak(H$\sub$ex/) was changed slightly from +87 Oe to +76 Oe, and the MR ratio was decreased from 0.9% to 0.1 %. On the other hand, the new (negative) MR peak shifted from -63 Oe to -80 Oe, with the MR ratio increased up to 0.3%. As the illuminated area expanded, the intensity of opposite MR peak increased and it of negative MR peak decreased. This proved that the local reversal of exchange biasing should be realized by laser annealing.