Browse > Article
http://dx.doi.org/10.4283/JKMS.2008.18.5.180

Anisotropy Effect of Exchange Bias Coupling by Unidirectional Deposition Field of NiFe/FeMn Bilayer  

Park, Young-Seok (Dept. of Western-Oriental Biomedical Engineering, Graduation, Sangji University)
Hwang, Do-Guwn (Dept. of Applied Physics and Electronics, College of Science & Engineering Science, Sangji University)
Lee, Sang-Suk (Dept. of Oriental Biomedical Engineering, College of Health Science, Sangji University)
Abstract
The relation of ferromagnet anisotropic magnetization and the antiferromagnet atomic spin configuration has been investigated for variously angles of unidirectional deposition magnetic field of FeMn layer in Corning glas/Ta(5 nm)/NiFe(7 nm)/FeMn(25 nm)/ Ta(5 nm) multilayer prepared by ion beam deposition. Three unidirectional deposition angles of FeMn layer are $0^{\circ},\;45^{\circ}$, and $90^{\circ}$, respectively. The exchange bias field ($H_{ex}$) obtained from the measuring easy axis MR loop was decreased to 40 Oe in deposition angle of $45^{\circ}$, and to 0 Oe in the angle of $90^{\circ}$. One other side hand, $H_{ex}$ obtained from the measuring hard axis MR loop was increased to 35 Oe in deposition angle of $45^{\circ}$, and to 79 Oe in the angle of $90^{\circ}$. Although the difference of uniderectional axis between ferromagnet NiFe and antiferromagnet FeMn was 90o, the strong antiferromagnetic dipole moment of FeMn caused to rotate the weak ferromagnetic dipole moment of NiFe in the interface. This result implies that one of origins for exchange coupling mechanism depends on the effect of magnetic field angle during deposition of antiferromgnet FeMn layer.
Keywords
exchange bias coupling; NiFe/FeMn bilayer; unidirectional deposition field; sample deposition angle;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, Biosens. Bioelectro., 13, 731 (1998)   DOI   ScienceOn
2 K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, J. Appl. Phys., 83, 6888 (1998)   DOI   ScienceOn
3 J. Nogues and I. K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999)   DOI   ScienceOn
4 S. Nakagawa, K. Nishimura, Y. Shimizu, and M. Naoe, IEEE Trans. Magn., 35, 2970 (1999)   DOI   ScienceOn
5 J. K. Kim, S. W. Kim, K. A. Lee, S. S. Lee, and D. G. Hwang, J. of Kor. Mag. Soc., 12(4), 143 (2002)   DOI
6 B. K. Kim, J. H. Kim, D. G. Hwang, and S. S. Lee, J. of Kor. Mag. Soc., 12(4), 132 (2002)   DOI
7 B. Dieny, Europhys. Lett., 17, 1333 (1994)
8 S. K. Kim, S. C. Shin, and K. Y. Kim, J. Kor. Phys. Soc., 39, 1060 (2001)
9 B. K. Kim, J. Y. Lee, S. H. Ham, S. S. Lee, and D. G. Hwang, J. of Kor. Mag. Soc., 13(2), 53 (2002)
10 S. S. Lee, S. H. Park, K. S. Soh, H. W. Joo, G. W. Kim, and D. G. Hwang, J. of Kor. Mag. Soc., 17(4), 172 (2007)   과학기술학회마을   DOI   ScienceOn
11 A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater., 202, 552 (1999)
12 B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, J. Appl. Phys., 69, 4774 (1991)   DOI
13 K. Mizoguchi, S. Tanaka, T. Ogawa, N. Shiobara, and H. Sakamoto, Phys. Rev. B, 72, 33106 (2005)   DOI   ScienceOn