Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.4.115

Magnetoresistance of Single-type and Dual-type GMR-SV Multilayer Thin Films with Top and Bottom IrMn Layer  

Choi, Jong-Gu (Department of Oriental Biomedical Engineering, Sangji University)
Kim, Su-Hee (Department of Oriental Biomedical Engineering, Sangji University)
Choi, Sang-Heon (Department of Oriental Biomedical Engineering, Sangji University)
Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University)
Abstract
The antiferromagnet IrMn based four different GMR-SV multilayers on Corning glass were prepared by using ion beam deposition and DC magnetron sputtering system. The magnetoresistance (MR) properties for single-type and dual-type GMR-SV multilayer films were investigated through the measured major and minor MR curves. The exchange bias coupling field ($H_{ex}$) and coercivity ($H_c$) of pinned layer, the $H_c$ and interlayer exchange coupling field ($H_{int}$) of free layer for the dual-type structure GMR-SV multilayer films consisted of top IrMn layer were 410 Oe, 60 Oe, 1.6 Oe, and 7.0 Oe, respectively. The minor MR curve of two free layers was performed the squarelike feature having a MR ratio of 8.7 % as the sum of 3.7 % and 5.0 %. The value of average magnetic field sensitivity (MS) was maintained at 2.0 %/Oe. Also, the magnetoresistance properties of the single-type and dual-type structure GMR-SV multilayer films consisted of bottom IrMn layer were decreased more than those of top IrMn layer. Two antiparallel states of magnetization spin arrays of the pinned and free layers in the dual-type GMR-SV multilayer films occurred the maximum MR value by the effect of spin dependence scattering.
Keywords
antiferromagnet; dual-type GMR-SV multilayer structure; magnetoresistance curve; magnetization spin array;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 M. D. Cubells-Beltran, C. Reig, J. Madrenas, A. D. Marcellis, J. Santos, S. Cardoso, and P. P. Freitas, Sensors 16, 939 (2016).   DOI
2 S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press, San Diego (1991) Chap. 6, pp. 123-176.
3 M. J. Kim, H. J. Kim, and K. Y. Kim, J. Korean Magn. Soc. 11, 72 (2001).
4 S. H. Jang, T. Kang, M. J. Kim, H. J. Kim, and K. Y. Kim, J. Korean Magn. Soc. 10, 196 (2000).
5 J. R. Childress, M. J. Carey, S. I. Kiselev, J. A. Katine, S. Maat, and N. Smith, J. Appl. Phys. 99, 08S305 (2006).   DOI
6 P. Khajidmaa and S. S. Lee, J. Korean Magn. Soc. 23, 193 (2013).   DOI
7 W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magn. 14, 18 (2009).   DOI
8 H. R. Kaufman, J. J. Cuomo, and J. M. E. Harper, J. Vac. Sci. Tech. 21, 725 (1982).   DOI
9 P. Khajidmaa, J. G. Choi, and S. S. Lee, J. Magn. 22, 7 (2017).   DOI
10 J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, Thin Solid Films 519, 8394 (2011).   DOI
11 J. G. Choi, D. G. Hwang, S. S. Lee, and J. R. Rhee, J. Kor. Phys. Soc. 62, 1954 (2013).   DOI
12 B. K. Kim, J. Y. Lee, S. S. Kim, D. G. Hwang, S. S. Lee, J. Y. Hwang, M. Y. Kim, and J. R. Rhee, J. Korean Magn. Soc. 13, 187 (2003).   DOI
13 S. S. Lee, B. Y. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys. 95, 7525 (2004).   DOI
14 W. I. Yang, J. G. Choi, and S. S. Lee, J. Korean Magn. Soc. 27, 82 (2017).   DOI
15 M. Fecioru-Morariu, Exchange bias in metallic ferromagnetic and antiferromagnetic bilayers. Effects of structure, dilution, anisotropy and temperature, Ph.D. thesis: Institute of Physics of RTWH Aachen (2008).
16 J. V. Kim and R. L. Stamps, Phys. Rev. B 71, 094405 (2005).   DOI