• Title/Summary/Keyword: 교통패턴

Search Result 566, Processing Time 0.031 seconds

Railway Line Planning Considering the Configuration of Lines with Various Halting Patterns (다양한 정차 패턴을 고려한 열차 노선계획의 수립)

  • Park, Bum-Hwan;Oh, Seog-Moon;Hong, Soon-Heum;Moon, Dae-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.115-125
    • /
    • 2005
  • The line planning problem is to determine the origin and destination stations of the lines with their frequencies so as to meet the OD demands. Since the advent of high speed trains, Korea railway is confronted with the urgent difficulty to reconstruct the line configuration with the frequencies of each line and each fleet type so the demands could be newly created as well as satisfied. Furthermore. the existing trains except the high speed trains suffer from a longer traveling time than before. Now, to reduce the passenger traveling time, the trains with the various halting patterns are run in the same line. Therefore, it is necessary to develop a new line planning model to consider the various halting patterns. Most of studies find the frequencies of each lines which meet the link traffic loads or minimum link frequencies. But these are based on the assumption of all stop patterns. Furthermore, it is not easy to include the actual constraints as like the minimum number of stops at a station, the maximum number of stops or a train, etc. We develop the line planning model considering not only the various halting patterns but also the actual constraints which is based on the multicommodity network flow model with the additional constraints.

Development of a Workload Assessment Index Based on Analyzing Driving Patterns (운전자 주행패턴을 반영한 작업부하 평가지표 개발)

  • KIM, Yunjong;LEE, Seolyoung;CHOI, Saerona;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.545-556
    • /
    • 2017
  • Various assessment indexes have been developed and utilized to evaluate the driver workload. However, existing workload assessment indexes do not fully reflect driving habits and driving patterns of individual drivers. In addition, there exists significant differences in the amount of workload experienced by a driver and the ability to overcome the driver's workload. To overcome these limitations associated with existing indexes, this study has developed a novel workload assessment index to reflect an individual driver's driving pattern. An average of the absolute values of the steering velocity for each driver are set as a threshold value in order to reflect the driving patterns of individual drivers. Further, the sum of the areas of the steering velocities exceeding the threshold value, which is defined as erratic steering area (ESA) in this study, was quantified. The developed ESA index is applied in evaluating the driver workload of manually driven vehicles in automated vehicle platooning environments. Driving simulation experiments are conducted to collect drivers' responsive behavior data which are used for exploring the relationship between the NASA-TLX score and the ESA by the correlation analysis. As a result, ESA is found to have the greatest correlation with the NASA-TLX score among the various driver workload evaluation indexes in the lane change scenario, confirming the usefulness of ESA.

A Research for Improvement of WIM System by Abnormal Driving Patterns Analysis (비정상 주행패턴 분석을 통한 WIM 시스템 개선 연구)

  • Park, Je-U;Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.59-72
    • /
    • 2010
  • WIM(Weigh-In-Motion) is the system measuring the weight of the vehicle with a high-speed. In the existing WIM system, vehicle weight is measured based on the constant speed and the error ratio has 10%. However, because of measuring the driving pattern, that is abnormal driving pattern which is like the acceleration and down-shift of the drivers, it has the error ratio which is bigger than the real. In order to it reduces the error ratio of WIM system, the improved WIM system needs to find the abnormal driving pattern. In order to reducing the error ratio of these WIM systems, the improved WIM system can find abnormal driving patterns. In this paper, the improved WIM system which analyzes the abnormality driving pattern influencing on the error ratio of WIM system of an existing and minimizes the error span is designed. The improved WIM system has the multi step loop structure of adding the loop sensor to an existing system. In addition, the measure function defined as an intrinsic is improved and the weight measured by the abnormal driving pattern is amended. The analysis of experiment result improved WIM system can know the fact that the error span reduces by 8% less than in the existing the maximum average sampling error 22.98%.

Discovery of Frequent Sequence Pattern in Moving Object Databases (이동 객체 데이터베이스에서 빈발 시퀀스 패턴 탐색)

  • Vu, Thi Hong Nhan;Lee, Bum-Ju;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.179-186
    • /
    • 2008
  • The converge of location-aware devices, GIS functionalities and the increasing accuracy and availability of positioning technologies pave the way to a range of new types of location-based services. The field of spatiotemporal data mining where relationships are defined by spatial and temporal aspect of data is encountering big challenges since the increased search space of knowledge. Therefore, we aim to propose algorithms for mining spatiotemporal patterns in mobile environment in this paper. Moving patterns are generated utilizing two algorithms called All_MOP and Max_MOP. The first one mines all frequent patterns and the other discovers only maximal frequent patterns. Our proposed approach is able to reduce consuming time through comparison with DFS_MINE algorithm. In addition, our approach is applicable to location-based services such as tourist service, traffic service, and so on.

A Non-stationary frequency analysis for annual daily maximum rainfalls(ADMRs) using mixed Gumbel distribution of bayesian approach (Bayesian 기법의 혼합 Gumbel 분포를 활용한 연최대일강우량에 대한 비정상성 빈도해석)

  • Choi, Hong-Geun;Yoo, Min-Seok;Han, Young-Cheon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.312-312
    • /
    • 2018
  • 우리나라의 기후 지형적 특성에 따라 연강수량의 50% 이상이 여름철에 내리며 이러한 짧은 기간에 집중적으로 내리는 강수패턴 조건하에서 수공구조물 설계시 대부분 극치빈도분석을 활용한다. 우리나라의 경우 단일 Gumbel 분포를 활용한 극치빈도분석을 많이 이용한다. 하지만, 최근 이상기후로 인하여 전세계적으로 강수패턴의 특징이 급격히 변하고 있으며, 우리나라의 강수패턴 또한 바뀌어가고 있다. 연강수량의 대부분은 태풍과 장마로 인한 강수량으로 이루어져 있고, 일반적으로 두 개의 모집단으로 이루어진 형태를 보인다. 앞선 연구에서 두 개 이상의 첨두를 가지는 형태의 연최대강수량 자료에 대해 8개의 지속시간별(1, 2, 3, 6, 9, 12, 18, 24hr)로 Bayesian 기법의 단일 Gumbel 분포형과 혼합 Gumbel분포형 기반의 극치빈도분석 결과를 비교하였고, 혼합 Gumbel 분포형이 이중첨두 부분의 거동을 효과적으로 모의하는 것을 확인하였다. 본 연구에서는 이상기후로 인한 강수량의 특징의 급격한 변화에 일정한 패턴이 있음을 가정하고 이중첨두의 연 최대일강수량 자료에 대해 혼합 Gumbel 분포형 기반 비정상성 빈도분석을 실시하였다. 정상성 빈도분석과의 비교를 위해 확률분포의 매개변수 산정시 우도함수를 Bayesian 기법을 통해 산정하여 각 분포형의 Bayesian information criterion(BIC) 값을 비교하였다. 비정상성일 경우의 BIC 값이 정상성일 경우 보다 작게 산정되었고, 강수패턴이 경향성을 가지는 것으로 판단할 수 있었다. 비정상성 혼합 Gumbel 분포형 모델은 최근 급격한 강수패턴의 변화에 대한 대응책으로서 활용성이 높을 것으로 기대된다.

  • PDF

A Malware Detection Method using Analysis of Malicious Script Patterns (악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법)

  • Lee, Yong-Joon;Lee, Chang-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.613-621
    • /
    • 2019
  • Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.

The Traffic Sign Classification by using Cellular Associative Neural Networks (셀룰라 연상 신경회로망을 이용한 교통표지판 분류)

  • Shin, Yoon-Cheol;Kang, Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.181-184
    • /
    • 2001
  • 인간 두뇌의 연상과 기억 작용의 모델링을 통한 구현의 일부분으로, 본 논문에서는 Hebb 의 학습방법과 non-cloning template를 사용하여 discrete-time cellular neural networks의 연상메모리 기능을 구현한다. 본 논문에서 사용된 학습방법은 각 셀의 인접한 셀과의 연결상태에 따라 하중값 메트릭스를 구현한다. 이러한 방법은 새로운 패턴의 추가 학습과 삭제가 쉽고, 또한 쉽게 구현 할 수 있는 장점이 있다. 이 방법으로 모의 실험에서는 교통표지판의 분류에 사용한다.

  • PDF

A Study on Reliability Improvement of Link Travel Speed using filtering GPS data (GPS자료 필터링을 통한 링크통행속도 신뢰성 향상에 관한 연구)

  • Choi Jin-Woo;Hong Nam-Kwan;Yang Young-Kyu
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2006.05a
    • /
    • pp.20-25
    • /
    • 2006
  • 차량 내에서 보내는 시간이 많은 현대인들에게 도로 내 여러 가지 상황 정보를 제공해 줄 수 있는 텔레매틱스 서비스가 점점 각광을 받고 있다. 도로 내 설치되어 있는 차량 검지기와 GPS(Global Positioning System) 기술을 통해 고수준의 교통 정보가 수집되고 있지만, 이를 가공하여 도로상의 운전자들에게 전달하는 방법은 최근 들어 활발하게 연구 중에 있다. 텔레매틱스 서비스 중 가장 중요한 서비스는 운전자가 요청하는 교통 상황 정보를 신속하고 정확하게 전달해 주는 것이다. 본 연구에서는 가까운 과거의 패턴 자료를 이용하여 필터링 범위를 산정한 후, 정상적인 흐름에 반하는 이상 자료들을 실시간으로 제거하여 신뢰성 있는 링크대표속도 값을 제공하는 방법을 제시한다.

  • PDF

Morphological Vehicle Classification Algorithm for Intelligent Transportation System (지능형 교통 시스템을 위한 형태학적 차량 분류 알고리즘)

  • 김기석
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • It is necessary to induce for using mass transit instead of passenger car, which is high occupied roadway. It is necessary to develop the automated enforcement system to do manage such things. There are lots of problems to enforce the exclusive roadway. One of the biggest problem is the difficulty of vehicle classification. In this paper, morphological vehicle classification algorithm is proposed. Vehicle object is separated from background using frame difference, then the proposed unique weighted skeleton feature is extracted. The experiments show that the vehicle identification results produced by weighted skeleton feature seem to be good quality.

  • PDF

Design of the Data Detection System to classify Risk Factors and to prevent Damage in Residential Areas on Railway (철도주변 주거지역 위험요소 분류와 피해 예방을 위한 데이터 감지 시스템 설계)

  • Han, Sanghyun;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.129-131
    • /
    • 2022
  • 본 논문에서는 열차의 운행으로 인한 철도 주변 주거지역에서 다양한 유형의 위험요소를 파악하고 분석하기 위한 시스템 운영방안을 제안한다. 위험 요소를 파악하고, 특정 위치의 필요한 센서를 부착하여 데이터를 수집 및 처리하고 패턴을 분석하여 사용자에게 필요한 정보를 제공함으로써, 철도 주변 주거지역에 어떠한 피해가 있는지 알 수 있고, 그에 적합한 적용방안을 마련하고, 시스템 제어를 위한 애플리케이션과 연동하여 사용자에게 더 나은 편의성을 제공할 수 있다.

  • PDF