DOI QR코드

DOI QR Code

Development of a Workload Assessment Index Based on Analyzing Driving Patterns

운전자 주행패턴을 반영한 작업부하 평가지표 개발

  • KIM, Yunjong (Transportation and Logistics Engineering, Hanyang University) ;
  • LEE, Seolyoung (Transportation and Logistics Engineering, Hanyang University) ;
  • CHOI, Saerona (Transportation Safety Research & Development Institute, Korea Transportation Safety Authority) ;
  • OH, Cheol (Transportation and Logistics Engineering, Hanyang University)
  • 김윤종 (한양대학교 교통물류공학과) ;
  • 이설영 (한양대학교 교통물류공학과) ;
  • 최새로나 (교통안전공단 교통안전연구개발원) ;
  • 오철 (한양대학교 교통물류공학과)
  • Received : 2017.10.10
  • Accepted : 2017.12.29
  • Published : 2017.12.31

Abstract

Various assessment indexes have been developed and utilized to evaluate the driver workload. However, existing workload assessment indexes do not fully reflect driving habits and driving patterns of individual drivers. In addition, there exists significant differences in the amount of workload experienced by a driver and the ability to overcome the driver's workload. To overcome these limitations associated with existing indexes, this study has developed a novel workload assessment index to reflect an individual driver's driving pattern. An average of the absolute values of the steering velocity for each driver are set as a threshold value in order to reflect the driving patterns of individual drivers. Further, the sum of the areas of the steering velocities exceeding the threshold value, which is defined as erratic steering area (ESA) in this study, was quantified. The developed ESA index is applied in evaluating the driver workload of manually driven vehicles in automated vehicle platooning environments. Driving simulation experiments are conducted to collect drivers' responsive behavior data which are used for exploring the relationship between the NASA-TLX score and the ESA by the correlation analysis. As a result, ESA is found to have the greatest correlation with the NASA-TLX score among the various driver workload evaluation indexes in the lane change scenario, confirming the usefulness of ESA.

운전자 작업부하를 평가하기 위해 다양한 평가지표가 개발되어 활용되고 있으나, 기존의 작업부하 평가지표의 경우 개별 운전자의 운전습관과 주행패턴을 충분히 반영하지 못하고 있다. 또한, 운전자마다 체감하는 작업부하량과 작업부하를 극복하는 능력은 개인차가 있다. 따라서, 본 연구를 통해 개별 운전자의 주행패턴을 반영한 새로운 작업부하 평가지표를 도출하였다. 개별 운전자의 주행패턴을 반영하기 위해 운전자 별 Steering Velocity 절대값의 평균을 임계값으로 설정하고 임계값을 초과하는 영역의 Steering Velocity 면적의 합을 계량화한 ESA (Erratic Steering Velocity Area)를 제시하였다. 본 연구에서는 주행 시뮬레이션 실험을 통해 자율주행차가 비자율차와 혼재되어 주행하는 군집주행 환경을 구축하여 비자율차의 운전자가 군집주행 환경에서 어떠한 영향을 받는지를 ESA를 활용하여 평가하였다. 주행 시뮬레이션 실험을 통해 군집유무에 따른 일반 비자율차 운전자의 반응행태자료를 추출하여 NASA-Task Load Index (NASA-TLX) 점수와 운전자 작업부하 평가지표간의 관계를 분석하였다. 그 결과, 차로변경 시나리오에서는 다양한 운전자 작업부하 평가지표 중 ESA가 NASA-TLX 점수와 상관관계가 가장 큰 것으로 나타나 ESA의 유용성을 확인하였다.

Keywords

References

  1. Faure V., Lobjois R., Benguigui N. (2016), The Effects of Driving Environment Complexity and Dual Tasking on Drivers' Mental Workload and Eye Blink Behavior, Transportation Research Part F: Traffic Psychology and Behaviour, 40, 78-90. https://doi.org/10.1016/j.trf.2016.04.007
  2. Forsman A., Nilsson L., Tornos J., Ostlund J. (2006), Effects of Cognitive and Visual Load in Real and Simulated Driving , 533, Technical Report VTI Report, 18-19
  3. Kim J.Y., Park J.S., Cho Y.J. (2010), Biomechanical Measuring Techniques for Evaluation of Workload, J. Ergon. Soc. Korea, 29(4), The Ergonomics Society of Korea, 445-453. https://doi.org/10.5143/JESK.2010.29.4.445
  4. Knappe G., Keinath A., Bengler K., Meinecke C. (2007), Driving Simulator as an Evaluation Tool-Assessment of the Influence of Field of View and Secondary Tasks on Lane Keeping and Steering Performance, 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV)
  5. Kountouriotis Georgios K., Carsten O. M., Merat N. (2016), Identifying Cognitive Distraction Using Steering Wheel Reversal Rates, Accident Analysis & Prevention, 96, 39-45. https://doi.org/10.1016/j.aap.2016.07.032
  6. Macdonald W. A., Hoffmann E. R. (1980), Review of Relationships Between Steering Wheel Reversal Rate and Driving Task Demand, Human Factors: The Journal of the Human Factors and Ergonomics Society, 22(6), 733-739. https://doi.org/10.1177/001872088002200609
  7. Ostlund J., Peters B., Thorslund B., Engstrom J., Markkula G., Keinath A. et al. (2005), Driving Performance Assessment-methods and Metrics.
  8. Tsugawa S., Kato S., Aoki K. (2011, September), An Automated Truck Platoon for Energy Saving, In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference, IEEE, 4109-4114.
  9. Verster J. C., Roth T. (2011), Standard Operation Procedures for Conducting the On-the-road Driving Test, and Measurement of the Standard Deviation of Lateral Position (SDLP), International Journal of General Medicine, 4, 359.
  10. Zheng Bin, Jiang X., Tien G., Meneghetti A., Panton O. N. M., Atkins M. S. (2012), Workload Assessment of Surgeons: Correlation Between NASA TLX and Blinks, Surgical Endoscopy, 26(10), 2746-2750. https://doi.org/10.1007/s00464-012-2268-6