• Title/Summary/Keyword: 교전공간

Search Result 11, Processing Time 0.037 seconds

Characteristics of Kill Probability Distribution of Air Track Within the Engagement Space Using Multivariate Probability Density Function & Bayesian Theorem (다변량 확률밀도함수와 베이지안 정리를 이용한 교전공간내 공중항적의 격추확률 분포 특성)

  • Hong, Dong-Wg;Aye, Sung-Man;Kim, Ju-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.521-528
    • /
    • 2021
  • In order to allocate an appropriate interceptor weapon to an air track for which the threat assessment has been completed, it is necessary to evaluate the suitability of engagement in consideration of the expected point of engagement. In this thesis, a method of calculating the kill probability is proposed according to the position in the engagement space using Bayesian theorem with multivariate attribute information such as relative distance, approach azimuth angle, and altitude of the air track when passing through the engagement space. As a result of the calculation, it was confirmed that the distribution form of the kill probability value for each point in the engagement space follows a multivariate normal distribution based on the optimal predicted intercepting point. It is expected to be applicable to the engagement suitability evaluation of the engagement space.

The Engagement HILS Technology Research in the Laboratory for Simulated Warfare between Electronic Warfare Equipment and High-speed Maneuvering Weapon System (실험실에서 전자전 장비와 고속 기동 무기체계 간 실 교전 모의용 조우 HILS 기술 연구)

  • Shin, Dongcho;Choe, Wonseok;Kim, Soyeon;Lee, Chiho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this paper, we describe the implementation methods and algorithms for the various technologies and devices required for the construction of the engagement HILS(Hardware In the Loop Simulation) in the limited space to simulate the high-speed maneuvering encounter situation of the weapon system in 3-dimensional real world space. Through this research, we have been able to suggest ways to analyze the major design elements of future electronic warfare equipment through experiments simulating actual engagements between various high-speed maneuvering weapons systems and electronic warfare devices in the future battlefield. It was confirmed that the M&S technology could be used to eliminate technical risks, reduce development cost, and shorten development time in the future real system development. The results of this study can be a great assist not only for the field of electronic warfare system research and development, but also for the research & implementation on HILS of various engaging class weapons systems.

Development of Underwater Warfare Models on the Naval Weapon Systems (해군무기체계 수중교전 모델 라이브러리 개발)

  • Han, Seungjin;Lee, Minkyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • ADD (Agency for Defense Development) has developed the naval warfare simulation environment (QUEST), this paper describes the model library of naval weapon systems for the application of underwater warfare simulation included in the QUEST. Models are basically developed in order to measure the effectiveness and tactical development of underwater engagement between ships and weapons. Analyzing the mission space of underwater engagement and the functionality of the legacy models, we define standards of the model structure and developed the model components. Each components are the well-defined environment, system, subsystem, algorithm models, and the interfaces are defined between them. Users can construct a model in an efficient way to various warfare scenarios using the re-usable model components and co-work with the common model library.

Development of Battle Space Model Based on Combined Discrete Event and Discrete Time Simulation Model Architecture for Underwater Warfare Simulation (수중운동체 교전 시뮬레이션을 위한 이산 사건 및 이산 시간 혼합형 시뮬레이션 모델 구조 기반의 전투 공간 모델 개발)

  • Ha, Sol;Ku, Namkug;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2013
  • This paper presents the battle space model, which is capable of propagating various types of emissions from platforms in underwater warfare simulation, predicting interesting encounters between pairs of platforms, and managing environmental information. The battle space model has four components: the logger, spatial encounter predictor (SEP), propagator, and geographic information system (GIS) models. The logger model stores brief data on all the platforms in the simulation, and the GIS model stores and updates environmental factors such as temperature and current speed. The SEP model infers an encounter among the platforms in the simulation, and progresses the simulation to the time when this encounter will happen. The propagator model receives various emissions from platforms and propagates these to other "within-range" platforms by considering the propagation losses and delays. The battle space model is based on the discrete event system specification (DEVS) and the discrete time system specification (DTSS) formalisms. To verify the battle space model, simple underwater warfare between a battleship and a submarine was simulated. The simulation results with the model were the same as the simulation results without the model.

함정용 전투체계 개발동향 및 전망 (1)

  • Kim, Yeong-Gil
    • Defense and Technology
    • /
    • no.3 s.169
    • /
    • pp.28-35
    • /
    • 1993
  • 미래의 4차원 교전 개념은 항공기, 수상함, 잠수함 및 육상기지로부터 미사일에 의한 동시다발적인 원거리 정밀 공격능력으로 특징지어지는 위협특성과 함정자체의 센서와 무기의 능력향상으로 인한 전투공간의 확대에서 비롯된다고 볼수 있습니다. 그러나 이러한 전장환경의 변화는 표적의 조기탐지 및 식별, 전투공간 확대로 인해 그 수량이 폭발적으로 증가되는 정보의 처리, 제한된 함정자원을 활용하여 자함의 생존성을 극대화시켜야 하는 문제를 야기시키게 되었으며, 이와 같은 문제를 해결하고자 제시된 대안이 통합 전투체계의 개발인 것입니다

  • PDF

Legal Status of Space Weaponization (우주공간에서의 무기배치와 사용의 법적 지위)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.247-276
    • /
    • 2017
  • The protection of space asset has been new major cause of space militarization. For such purpose, it has been officially announced that a policy of deterring and denying any adversaries from accessing the outer space. Space militarization is to be conversed into a new concept of space weaponization. The USA has announced its policy of space weaponization, while China and Russia have not revealed their plan or policy. Latter States, however, have proposed a draft treaty limiting the deployment of warfare in the outer space. The terms of the Outer Space Treaty, reflecting three significant United Nations General Assembly resolutions from the 1960s, support the position that ground rules must be observed in the exploration and the use of outer space, particularly in the absence of specific space law rules. Yet the combination (and culmination) of these two approaches to the legal regulation of outer space-specific rules as and when agreed by the international community and the translation of principles developed for terrestrial regulation to outer space-still leaves much room for uncertainty and exploitation for military and strategic purposes. As space weaponization may contribute to deterring the use of weapon, it may be not against the UN Charter Article 2(4). If space weaponization might generate the space debris such that the outer space is no more available for exploration and use, it is against the proportionality principle and discrimination principle enshrined in the laws of the war. But, if the limitation upon the kind and use of space weaponization is agreed among the States, then the space weaponization may not be against the laws of the war, and be considered permissible within the rationale of limited war.

  • PDF

워게임 모형의 C41 기능통합 및 연동화 시뮬레이션 기법

  • 문형곤;박찬우
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.153-153
    • /
    • 2000
  • 최근 선진국들은 신규 워게임모형 개발시 장차전 개념을 반영하기 위하여 미래전자의 주요기능인 C4ISR 및 객체지향 기법을 적용하려고 노력하고 있다. 이러한 워게임 모형들은 현실과 같은 가상환경에서 합동작전을 모의할 수 있으며 전략, 작전 및 전술 수준을 모두 고려할 수 있고 지상전, 공중전, 해상전, 미사일전, 정보전 등 현대 전투개념을 모두 반영할 수 있도록 초대형 시뮬레이션 시스템으로 발전되고 있다. 본 고에서는 C4I 기능통합 및 연동화 모의 논리중에서 전략기동, 전술기동, 교전평가, 전략수송, 표적탐색, 미사일 판정을 위한 모의 기법과 초대형 시뮬레이션 시스템의 자료/명령 전달 구조 및 하드웨어/소프트웨어 사양, 구성 모듈등을 분석한다. 특히 현재 미 합참에서 개발중인 JWARS모형의 주요 객체들인 전투공간개체(BSE: Battle Space Entity), 아크-노드 네트워크, 화력 집중점(FCPs: Fire Concentration Points) 등을 살펴보고 현대전의 가장 큰 특징인 C4ISR/(Command, Control, Communication, Computer, Intelligence, Surveillance, Reconnaissance) 분야에서 표적탐지, 통신, 정보 모의 기법을 분석함으로써, 향후 한국적 여건에 적합한 분석모형 개발 방향을 제시하고자 한다.

  • PDF

Test Headquarter Measurement Emulator Based on Plug-In Architecture For Anti-Ballistic Missile Test (탄도탄 요격미사일 시험을 위한 플러그인 아키텍처 기반 계측데이터 모의 소프트웨어 설계)

  • Jeong, Young-Hwan;Wi, Soung-Hyouk;Kim, Sae-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.634-635
    • /
    • 2014
  • 가상 환경 기반의 시험 수요가 군사 무기체계 분야에서 지속적으로 증가하고 있다. 가상 환경 기반 기술의 증가 이유는 시험 및 평가에서 낮은 비용과 높은 효율을 달성할 수 있기 때문이다. 본 논문에서는 교전환경을 Modeling & Simulation기법으로 가상환경을 만들어 비용을 최소화하고 공간적 제약도 해결할 수 있다. 계측데이터 모의 소프트웨어는 플러그인 아키텍처에 기반을 두어 실 탄도탄 정보를 모의해 탄도탄 요격미사일 시험에 적합한 환경을 구성하도록 설계되었다. 각 기능을 컴포넌트 별로 분리하여 개발해 특정 모델을 Third party 형태로 개발할 때 유용한 구조임을 설명한다.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.

A study on the actual precision shooting training based on virtual reality (가상현실 기반 실전적 정밀사격훈련 구현 연구)

  • Lee, Byounghwak;Kim, Jonghwan;Shin, Kyuyoung;Kim, Dongwook;Lee, Wonwoo;Kim, Namhyuk
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.62-71
    • /
    • 2018
  • The rapid growth of virtual reality technology in the era of the 4th Industrial Revolution has accelerated scientification of combat training systems in addition to ICT(information and communications technology) in military field. Recently, research and development of simulators based on virtual reality have been actively conducted in order to solve sensitive issues such as increase of civil complaints due to the noise of a shooting range, prevention of shooting accident, and reduction of training cost. In this paper, we propose two key solutions: spatial synchronization method and modified point mass trajectory model with small angle approximation to overcome technical limitations of a current training simulator. A trainee who wears a haptic vest in a mixed reality environment built in MARS(medium-range assault rifle shooting simulator) is able to conduct not only precision shooting but also two-way engagement with virtual opponents. It is possible for trainee to receive more reliable evaluations in the MARS than an existing rifle simulator based on laser.

  • PDF