• Title/Summary/Keyword: 교량 슬래브

Search Result 161, Processing Time 0.031 seconds

Wheel Load Distribution of Simply Supported Reinforced Concrete Slab Bridge (철근콘크리트 단순 슬래브 교량의 윤하중분포폭에 관한 연구)

  • 오병환;신호상;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.125-134
    • /
    • 1998
  • 최근에 수행된 일련의 철근콘크리트 슬래브 교량의 파괴시험의 결과 비록 교량의 노후화되었다 하더라도 내하력은 설계하중보다 더 크게 나타나고 있다. 본 연구에서는 철근콘크리트 슬래브 교량의 이런 높은 내하능력을 보이는 여러 가지 원인들 가운데 가장 큰 영향을 줄 것으로 예상되는 슬래브 교량의 하중분배거동에 대한 연구를 수행하였다. 철근콘크리트 슬래브 교량의 윤하중분포폭에 영향을 미치는 주요 변수들에는 지간길이, 교량폭, 단부보, 하중형태 및 지점조건이 있다. 본 연구결과에 의하면 지간길이와 교폭에 따라 현행의 윤하중분포폭은 과소 혹은 과대 평가되고 있다. 이들 각 변수들에 대한 포괄적인 유한요소 해석과 분석을 통하여 철근콘크리트 슬래브 교량의 윤하중분포폭을 도출하였고 이들 결과들을 비선형 회귀분석을 통하여 슬래브 교량의 윤하중분포폭의 예측 및 설계식을 제안하였다. 본 연구에서 제안된 윤하중분포폭의 식은 철근콘크리트 슬래브 교량의 보다 정확한 설계 및 합리적인 내하력 산정시 매우 효율적으로 사용될 것으로 사료된다.

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

Flexural & Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges (거더형식 프리캐스트 모듈러교량 연속화 지점부에 적용되는 연결슬래브의 휨성능 및 피로성능 평가)

  • Joo, Bong-Chul;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.517-528
    • /
    • 2013
  • The modular technology has been already applied in automotive industry, plant and shipbuilding industry. Recently, the modular technology was applied in bridge construction. The modular bridge is different from the existing precast bridges in terms of standardized design that the detailed design of members is omitted by using the standard modules; the design of the modular bridge is completed by only assembling the standard modules without design in member level. The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. The link slabs have been used as the type of reinforced concrete structure in US from the 1950's. In 2000's, the link slab using the engineered cementitious concrete (ECC link slab) has been developed. In this study, the RC type link slab which is more reproducible and economic relative to the ECC link slab was used for the continuity of the girder-type precast modular bridges, and the construction detail of RC type link slab was modified. In addition, the modified iterative design method of RC type link slab was proposed in this study. To verify the proposed design method, the flexural tests were conducted using the RC type link slab specimens. Also, the fatigue test using the mock-up specimen was conducted with cyclic loading condition up to two million cycles.

Analysis of Structural Behavior for Abutment Integral Approach Slabs (교대일체식 접속슬래브의 구조적 거동 분석)

  • Nam, Young-Kug;Lee, Heung-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.1-2
    • /
    • 2009
  • Abutment Integral Approach Slabs are proposed to improve road traveling performance of bridge approaches and evaluated analysis application possibility of approach slabs in abutment integral approach slabs as comparing between Abutment Integral Approach Slabs and approach slabs in general bridges.

  • PDF

A Parametric Study on the Serviceability of Concrete Slab Track on Railway Bridges (철도교 콘크리트 슬래브궤도의 사용성에 관한 매개변수 영향 연구)

  • Park, Hong-Kee;Jang, Seung-Yup;Yang, Sin-Chu;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • Deformations of bridge deck ends on abutments and piers bring about severe problems in track geometry and require maintenance work. In case of concrete slab track, more severe deformation and additional forces on rail and rail supports can be induced by bridge deck deformation, which affect the serviceability of track structure since concrete slab track is much stiffer than ballasted track and the behavior of track structure is integrated with that of bridge deck. In this study, the design variables affecting the serviceability of track structure are selected and the influence level is estimated by a parametric study. As a result, it is found that continuous span is advantageous than simply supported span and the stiffness of bridge bearing and rail fastener as well as the distance between last rail support and bridge bearing are most important parameters.

Behavior Analysis of Approach Slabs of IPM Bridges according to Unsupported Length and Settlement (토압분리형 교량 접속슬래브의 비지지길이와 지반 침하에 따른 거동 해석)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.650-660
    • /
    • 2018
  • The approach slab plays an important role in the driving comfort of the connection section on a bridge. On the other hand, the approach slab only calculates the section force of a simple beam, and does not analyze the behavior. In this study, the unsupported length and settlement of approach slabs of IPM Bridges were examined using structural analysis. First, the section force was calculated by designing a simple beam, according to the length of the approach slab. The structural analysis was conducted to examine the behavior of the unsupported length and settlement. As the result, the bending moment decreased when the unsupported length was increased, and the bending moment increased when the settlement was increased. In addition, the design section force was estimated to be larger than the force of structural analysis, and the design of the approach slab according to the design guideline showed no problem in stability. Nevertheless, the vertical displacement exceeded the maintenance criterion of a 1/200 curve when the settlement exceeded 10 mm regardless of the unsupported length. Therefore, excessive settlement occurs in the reinforced earth retaining wall supporting the approach slab, and the design bending moment may be exceeded. Therefore, strict management is required.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Laminates Theory (특별직교이방성 복합적층판 이론을 응용한 포스트텐션된 슬래브 교량의 해석)

  • Han, Bong Koo;Kim, Yun Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • A post-tensioned slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

Simple Method of Analysis for Concrete Slab Bridges by the Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 콘크리트 슬래브교량의 간편해석법)

  • Han, Bong-Koo;Suck, Jun-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • The simple supported reinforced concrete slab bridges are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. The plate aspect ratio considered is from 1 : 1 to 1 : 6. The result of this paper can be used for simply supported slab bridges analysis.

  • PDF

Numerical Investigation on Cracking of Bridge Deck Slabs with Latex Modified Concrete Overlays (라텍스 개질 콘크리트 교량 교면 포장부 균열에 대한 수치해석 연구)

  • Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Latex modified concrete (LMC) exhibits improved material properties including high tensile strength and durability compared with conventional concrete, and hence LMC has been used as protective layers over the bridge deck slabs to increase their service life with underlying assumption of excellent bond behavior between the LMC overlay and the concrete substrate. In this study, the effect of the primary parameters of the concrete substrate (i.e., shrinkage, stiffness and cracking capacity) as well as the LMC overlay thickness on the probability of cracking of the bridge deck slabs using LMC overlays was investigated by carrying out the finite element analysis that simulated the bond behavior of LMC overlays on normal strength concrete (NSC) and HPC bridge deck slabs. Based on the results of the numerical analysis, it is concluded that the relatively high shrinkage strains and stiffness of HPC slabs can increase its probability of cracking in bridge deck slabs using LMC overlay.

Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge (연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구)

  • 신호상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.135-143
    • /
    • 1998
  • The wheel load distribution width for lane load is not specified in current Korea bridge design code(KD code), not like in current AASHTO and AASHTO LRFD specifications which specity it as twice of wheel load distribution width for wheel load. In this study, the wheel load distribution width in continuous reinforced concrete slab bridge is investigated. The major variables affecting the wheel load distribution of a reinforced concrete continuous slab bridge are the span length, bridge width, existence edge beam and boundary condition. From a series of comprehensive parametric study on each variable, the formula for wheel load distribution in continuous reinforced concrete slab bridge is proposed from the nonlinear regression analysis of finite element analysis results. The proposed formulas can be used efficiently in the accurate design of continuous reinforced concrete slab bridges.