• Title/Summary/Keyword: 광촉매 처리

Search Result 196, Processing Time 0.023 seconds

Treatment of an Authentic Textile-dyeing Wastewater Utilizing a Fluidized Biofilter and Hybrid Recirculating System Composed of the Fluidized Biofilter and a UV/photocatalytic Reactor (실제 혼합염색폐수의 유동상 시스템을 활용한 미생물처리와 하이브리드 재순환시스템처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • A fluidized biofilter was filled with Pseudomonas sp. and Bacillus cereus/thuringiensis-fixed waste-tire crumb media and was run to treat authentic textile-dyeing wastewater mixed with alkaline polyester-weight-reducing wastewater. As a result, its removal efficiency of $COD_{Cr}$ and color were 75~80% and 67%, respectively. In addition, upon constructing hybrid-recirculating system composed of the fluidized biofilter and a 450 W-UV/photocatalytic reactor, only fluidized biofilter was run bypassing UV/photocatalytic reactor at stage I. Subsequently, the hybrid system was continuously run at stage II-i, ii and iii. At stage II-i, the total removal efficiency of $COD_{Cr}$ was enhanced to be 80~85%, compared to 75% at stage I, owing to 20~30% removal efficiency of the UV/photocatalytic reactor. However, at stage II-i, the total removal efficiency of color was enhanced to be 65~70%, compared to 45~65% at stage I, even though the removal efficiency of the UV/photocatalytic reactor was tantamount to merely 0~5%. As far as the removal efficiency of fluidized biofilter of the hybrid-recirculating system is concerned, its removal efficiency of color was enhanced by the synergy effect of the hybrid-recirculating system unlike $COD_{Cr}$. Besides, despite of the increase of hybrid-recirculating system-recycle ratio, the deactivation of photo-catalytic activity was scarcely observed to eliminate the color while its irreversible deactivation was observed to eliminate $COD_{Cr}$.

Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.574-583
    • /
    • 2021
  • Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 ℃ hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Degradation of Ethylene Gas Using a Thin Film Photocatalytic Reactor (박막 광촉매 반응기를 이용한 에틸렌가스의 분해)

  • 권성중;김영관;김동현;이상국
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.233-234
    • /
    • 1999
  • 현대사회는 교통량의 증가와 산업시설의 증가로 인해 각종 대기오염물질과 함께 휘발성유기화합물 (Volatile Organic Compounds, 이하 VOCs)에 의한 대기오염이 점점 더 심각해지고 있다. 하지만 기존의 VOCs 처리장치는 비용이 고가이고 운전하는데 있어서도 어려움이 많은 것으로 알려져 있다. 이에비해 광촉매 반응장치는 현재 수처리에서 고급산화법의 한 공정으로 침출수나 염색폐수, 제지폐수 등에 있는 난분해성 물질들의 처리에 적용하여 큰 효과가 있는 것으로 보고되고 있으나 대기오염물 처리에 적용하여 큰 효과가 있는 것으로 보고되고 있으나 대기오염물 처리에 대한 국내연구는 그 사례가 적고 또한 기초단계에 있다.(중략)

  • PDF

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal (광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거)

  • 추광호;박경원;김문현
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2004
  • This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination (기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성)

  • Lee, Hyeryeon;Lim, Chaehun;Lee, Raneun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.632-639
    • /
    • 2021
  • In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.

Surface Modification of TiO2 by Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 TiO2 광촉매의 효율향상을 위한 표면 개질 연구)

  • Cho, S.J.;Jung, C.K.;Kim, S.S.;Boo, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • To improve surface wettability, each sample was treated by atmospheric pressure plasma (APP) using dielectric barrier discharge (DBD) system. Argon and oxygen gases were used for treatment gas to modify the $TiO_2$ surface by APP with RF power range from 50 to 200 W. Water contact angle was decreased from $20^{\circ}$ to $10^{\circ}$ with argon only. However, water contact angle was decreased from $20^{\circ}$ to < $1^{\circ}$ with mixture of argon and oxygen. Water contact angle with $O_2$ plasma was lower than water contact angle with Ar plasma at the same RF power. It seems to be increasing the polar force of $TiO_2$ surface. Also, analysis result of X-ray photoelectron spectra (XPS) shows the increase of intensity of O1s shoulder peak, resulting in increasing of surface wettability by APP. Moreover, each water contact angle increased according to increase past time. However, contact angle increase with plasma treatment was lower than without plasma treatment. Additionally, the efficiency of $TiO_2$ photocatalyst was improved by plasma surface-treatment through the degradation experiment of phenol.

Investigation of effect of zirconia on osseointegration by surface treatments (지르코니아 표면처리가 골유착에 미치는 영향)

  • Jeong, Jin-Woo;Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Purpose: The aim of this study was to investigate effect of zirconia on osseointegration and Surface appearance by surface treatments using various acid solution. Materials and Methods: The prepared zirconia disks were treated with hydrofluoric acid solution and photo-assisted etching under various condition. The surface was analyzed by SEM and the surface roughness was analyzed by using surface profiler. The osteogenic effect of MC3T3-E1 cells was assessed via fluorescent staining observation and reverse transcriptase-polymerase chain reaction (RT-PCR). Results: Various roughness were obtained according to the surface treatment method. The surface roughness increased in the group treated with hydrofluoric acid solution, but that had week network structure. In the method using photo-assisted etching, the surface roughness increased in micro units. Cell reaction showed better results in the photo-assisted etching group than in the hydrofluoric acid-treated group (P < 0.05). And it showed even osteoblastic cell distribution in photo-assisted etching group. Conclusion: As a result, the photo-assisted etching method is more effective than the simple acid solution treatment for zirconia treatment for osseointegration.