• Title/Summary/Keyword: 광산의 예측

Search Result 94, Processing Time 0.024 seconds

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering (전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구)

  • Park, Il Hyun;Jang, Han Woong;Baek, Seung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.271-279
    • /
    • 2015
  • The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

The Predicting Environmental Fate of Cd, Cu, and Pb by Sequential Fractionation in Mine Tailings and Agricultural Soils

  • Lee, Do-Kyoung;Chung, Doug-Young;Park, Mi-Sun;Lee, Seung-Kil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.195-200
    • /
    • 1998
  • 토양내에 있어 중금속의 총량 분석만으로는 오염 토양에 대한 환경 평가를 위한 충분한 자료가 되지 못한다. 또한 중금속의 토양내 위해성은 중금속과 토양과의 화학적 상호작용에 의해 결정되기 때문에 중금속의 화학적 형태를 규명하는 것은 토양 환경에 있어서 그들의 이동성과 거동 특성을 평가하는데 중요한 자료가 된다. 연속 추출법은 구봉 광산의 광미로 부터 Cd, Cu, Pb을 화학적 형태에 따라 분리하고, 인위적으로 중금속을 포화시킨 광미와 두밭토양에 있어 중금속의 토양내 거동 특성을 예측하기 위하여 이용되었다. 광미중 Pb의 대부분은 Fe-Mn oxide, carbonate의 결합 형태로 존재하였으며, Cu와 Cd은 각각 71.8%와 42.9%가 유기물, carbonate의 결합형태로 존재하였다. 상당량의 Cd(94.9%), Cu(95.1%), 그리고 Pb(85.8%)은 토양내 잠재적으로 이동 가능한 형태로 존재하였다. 유성과 논산의 밭토양 에 가해진 Cd는 대부분 이동성이 가장 높은 치환태로 존재하였으며, 유성과 논산 토양에서 각각 67.9%와 93.2%가 치환태로 존재하였다. 토양에 가해진 Cd, Cu, Pb은 대부분 이동이 용이한 형태로 존재하였으며, 토양과의 결합세기는 Pb > Cu > Cd 순으로 감소하였다.

  • PDF

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

Study on Simulation of Dust Diffusion at Open Pit Mines (노천광산의 발파분진 비산영역 예측에 관한 연구)

  • 김복윤;이상권;조영도;김임호
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.194-199
    • /
    • 1998
  • This research was aimed to figure out the trend of dust diffusion at open pit limestone mine for assessing the environmental impacts on the high voltage power transmission line. It is rather easy to assess the dust generation and size distribution of limestone dust at the blasting site, but it is very hard to assess the expected area of dust diffusion and amount of dust fall by the distances from the dust source. In this research, a 3-dimensional fluid dynamic simulation software (3D-Flow) was used for analysing the above mentioned matters to assess the impacts to the insulators on the transmission tower by the blasting dust. It was verfied that the 3D-Flow is reliable tool for simulating dust movement, and the limestone dust is not much hazardous to the power transmission line.

  • PDF

A Propagation Prediction Model for Planning a Cell in the PCS System (PCS 시스템 셀설계를 위한 전파예측 모델)

  • 김송민
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.103-112
    • /
    • 1998
  • This paper proposes a propagation prediction model which can calculate a propagation path loss easily at option point in case of the propagation processing by repeat reflection when we analysis a propagation route, it makes the calculation speed which is the defect of a geometrical of image method and a ray-launching method improve and we develop and apply the algorithms which can do an angle of incidence, an angle of reflection with a propagation direct path, a reflection path and a maximum reflection number arithmetic process synchronously. Finally we choose as a sample which is the real road condition where is around SK telecoms chunnam branch office in wolgok-dong, kwangsan-ku, kwangju and simulate proposition model then we demonstrate the relative superiority with comparing the results.

  • PDF

A Study on Estimation of Economic Effects on Mining Products Import Substitution Using Macroeconometric Input-Output Model (거시계량투입산출 모형을 이용한 광산품 수입대체의 경제적 효과 추정 연구)

  • Kim, Ji-Whan;Lee, Kyung-Han;Kim, Yoon Kyung
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.237-246
    • /
    • 2014
  • In this study, it is estimated how many changes of macroeconomic variables are happened under the proposition of import substitution of mining products 1% using macroeconometric input-output model. For this, used macroeconometric input-output model is composed of 141 behavioral equations representing the macroeconomy structure. In general, macroeconometrics models are constructed mainly on the side of the expenditure then it is not easy to estimate the effects of the shocks occurred from industry level. To mitigate that, this study tries to construct a macroeconometric input-output model. Macroeconometrics model which is useful to estimate the effects of macroeconomic shocks, economic policy and more, in this study, is linked with input-output table through the NDI(national disposable income) derived from compensation of employee. And this paper presents the estimation results of import substitution effects of mining products on Korean economy. As a results, GDP is increased 0.00073%, gross labor employed 0.00029%, current balanace 0.00010% and unemployment rate is mitigated 0.00233%.

A Case Study on Predicting and Analyzing Inflow Sources of Underground Water in a Limestone Mine (석회석 광산 갱내수 유입원 예측분석 사례연구)

  • Minkyu Lee;Sunghyun Park;Hwicheol Ko;Yongsik Jeong;Seon-hee Heo
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.388-398
    • /
    • 2023
  • The changes in groundwater flow due to mining development act as a contributing factor to major issues such as ground subsidence, strength reduction and collapse. For the sustainable mining development, measures for dealing with fluctuations in seasonal underground water inflow, power losses, pump damage, and unexpected increases in inflow must be put in place. In this study, the aim is to identify the causes of underground seepage through the examination of hydrological connectivity between the study area and nearby limestone mine. A tracer tes for assessing subsurface connectivity has been planned. A variety of tracers, such as dyes and ions, were applied in lab test to select the optimal tracer material, and a hydrological model of the study area was implemented through field test. Finally, the hydrological connectivity between the external stream and underground water in the mine was analyzed.

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

Numerical Study on the Reduction of Blast-induced Damage Zone (최외곽공 주변암반의 발파굴착 손상영역 저감에 관한 수치해석적 연구)

  • Park, Se-Woong;Oh, Se-Wook;Min, Gyeong-Jo;Fukuda, Daisuke;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.25-33
    • /
    • 2019
  • Controlling the blast-induced damage zone(BDZ) in mining excavation is a significant issue for the safety of employees and the maintenance of facilities. Numerous studies have been conducted to accurately predict the BDZ in underground mining. This study employed the dynamic fracture process analysis (DFPA) to estimate the BDZ from a single hole blasting. The estimated BDZ were compared with the results obtained by Swedish empirical equation. The DFPA was also used to investigate the control mechanism of BDZ and fracture plane formation around perimeter holes for underground mining blasting.