• Title/Summary/Keyword: 광분해 반응

Search Result 188, Processing Time 0.023 seconds

Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables (유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성)

  • Lim, Nam-Yun;Lee, Seung Yong;Park, Jaehyeon;Kwak, Jini;Park, Hai Woong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/ alumina beads at $600^{\circ}C$, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.

Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method (단순 침전법으로 제조한 가시광선용 CdZnS/ZnO 광촉매의 재활용 특성)

  • Lee, Gun Dae;Park, Seong Soo;Jin, Youngeup;Hong, Seong Soo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • CdZnS/ZnO composite was prepared through low-temperature precipitation and drying method. The property of CdZnS/ZnO as a recyclable photocatalyst for the degradation of rhodamine B (RhB) under visible light irradiation was examined. The sample was characterized by XRD, FE-SEM, XPS, UV-vis DRS and photoluminescence techniques before and after repeated reaction to investigate the change of properties during the photocatalytic reaction. During repeated reaction, the CdZnS/ZnO showed an improved photocatalytic activity and recycle stability. Among two feasible reaction pathways for photocatalytic degradation of RhB, the cleavage of conjugated chromophore was found to predominate over N-dealkylation of chromophore skeleton in the present work. The results indicate that the CdZnS/ZnO, prepared by a simple precipitation method, can be used as a visible-light driven photocatalyst with enhanced cycle stability and activity.

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation (가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응)

  • Lee, Hyun Jung;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.356-361
    • /
    • 2015
  • $Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.

Degradation Characteristics of Oxalic Acid and Citric Acid by UV/H2O2 Oxidation (Oxalic Acid와 Citric Acid UV/H2O2에 의한 분해특성 조사)

  • Ha, Dong-Yun;Cho, Soon-Haing;Choi, Young-Soo;Kyung, Gyu-Seok;Kim, Dong-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1307-1318
    • /
    • 2000
  • The purpose of this study is to investigate the degradation characteristics of oxalic acid and citric acid by $UV/H_2O_2$ oxidation. For this purpose, the effects of pH, $H_2O_2$ dosage and the concentration of each compounds on the degradation of oxalic acid and citric acid by $UV/H_2O_2$ were investigated. Oxalic acid was effectively degraded at the wavelength of 254 nm, while the degradation efficiency of citric acid was very low at the same wavelength. It was also found that both organic substances were not degraded by the injection of $H_2O_2$ only. The optimum pH of degradation of oxalic acid and citric acid was 4 and 4 to 6, respectively. In the case of $UV/H_2O_2$ oxidation, the degradation efficiency was increased by increasing $H_2O_2$ dosage. The degradation efficiency decreased when the dose of $H_2O_2$ exceeds 200 mg/L. From these results, it can be concluded that the optimum reaction conditions for the degradation of oxalic acid and citric acid by $UV/H_2O_2$ oxidation were pH 4 and 200mg/L of $H_2O_2$.

  • PDF

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball (Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가)

  • Oh, Ju Hyun;Ahn, Hosang;Jang, Dae Gyu;Ahn, Chang Hyuk;Lee, Saeromi;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.636-642
    • /
    • 2013
  • In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.

Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia (암모니아 표면처리 된 질소 도핑 $TiO_2$ 광촉매의 합성 및 광분해반응)

  • Kim, Yesol;Bai, Byong Chol;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.308-312
    • /
    • 2012
  • Nitrogen doped $TiO_2$ photocatalysts were prepared by ammonia for exploring the visible light photocatalytic activity. To explore the visible light photocatalytic activity of the nitrogen doped $TiO_2$ photocatalyst, the removal of methylene blue dye was investigated under the sunlight. SEM images showed that the flocculated particle sizes of N-doped $TiO_2$ decreased due to the reaction with ammonia. XRD patterns demonstrated that the samples calcined at temperatures up to $600^{\circ}C$ and doped with nitrogen using ammonia clearly showed rutile as well as anatase peaks. The XPS results showed that the nitrogen composition onto $TiO_2$ increased according to the reaction time with ammonia. Photocatalytic activity of the nitrogen doped $TiO_2$ was better than that of undoped $TiO_2$. Nitrogen doping onto the $TiO_2$ also affected the crystal type of $TiO_2$ photocatalyst.

Anionic Effect on Photocatalytic Decomposition of Benzene (벤젠의 광촉매분해반응에 대한 음이온효과)

  • Kim, Young-Hee;Kim, Tae-Gyun;Lee, Chun-Sik
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2000
  • In the photocatalytic degradation of benzene using $TiO_2$ as photocatalyst, anionic effects were investigated. When near UV and visible light was irradiated, the photodegradation of benzene was slightly increased in which $S_2O{_8}^{2-}$ or $NO{_3}^-$ coexisted with $TiO_2$. But $NO{_2}^-$ or $Cl^-$ diminished it remarkably, because these anions scavenged hydroxyl radical. While in the case of UV light irradiation, $S_2O{_8}^{2-}$ and $NO{_3}^-$ enhanced photodegradation of benzene due to photosensitization of these anions, but $NO{_2}^-$ or $Cl^-$ diminished it little.

  • PDF

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

이달의 과학자 - 서울대 화학과 교수 김명수박사

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.29 no.3 s.322
    • /
    • pp.84-85
    • /
    • 1996
  • 자연계에 존재하는 물질의 반응방향과 변화거동 측정에 대한 독창적 이론 및 실험법을 개발해 세계 물리화학계의 주목을 받고 있는 서울대 화학과 김명수교수. 김교수는 최근 고분별능 질량분석계에 레이저시스템을 장착한 기기를 사용하여 특수레이저 광분해기술을 개발, 시간분해능을 천배 앞당기는데 성공함에 따라 10-9초동안에 일어나는 이온의 화학반응을 연구할 수 있게 되었다.

  • PDF