Browse > Article
http://dx.doi.org/10.14478/ace.2015.1046

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation  

Lee, Hyun Jung (Department of Industrial Chemistry, Pukyong National University)
Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University)
Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University)
Hong, Seong Soo (Department of Chemical Engineening, Pukyong National University)
Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.3, 2015 , pp. 356-361 More about this Journal
Abstract
$Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.
Keywords
cadmum zinc sulfide; zinc oxide; composite; photocatalyst; visible light;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Lee, N. J. Kim, and C. H. Yoon, A study on the removla of COD and color to wastewater using plasma generator, J. Korean Oil Chemist's Soc., 23, 273-279 (2006).
2 A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I., Dyes and Pigments, 73, 390-393 (2007).   DOI   ScienceOn
3 X. Z. Li, F. B. LI, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_x-TiO_2$ under visible light irradiation, J. Photochem Photobio. A, 141, 209-217 (2001).   DOI   ScienceOn
4 M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using $TiO_2$ for hydrogen production, Renew. Sustain. Energy Rev., 11, 401-425 (2007).   DOI   ScienceOn
5 N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S$/NiS hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013).   DOI   ScienceOn
6 S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M., and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S$@ZnO core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012).   DOI   ScienceOn
7 X. Wang, H. Tian, W. Zheng, and Y. Liu, Visible photocatalytic activity enhancement of $Zn_{0.8}C_{1-x0.2}S$ by hybridization of reduced graphene oxide, Mater. Lett., 109, 100-103 (2013).   DOI   ScienceOn
8 X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014).   DOI
9 W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011).   DOI   ScienceOn
10 R. A. McBride, J. M. Kelly, and D. E. McCormack, Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts, J. Mater. Chem., 13, 1196-1201 (2003).   DOI   ScienceOn
11 Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS catal. 3, 882-889 (2013).   DOI   ScienceOn
12 Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Comp., 609, 46-53 (2014).   DOI   ScienceOn
13 Q. Li, H. Meng, J. Yu, W. Xiao, Y. Zheng, and J. Wang, Enhanced phtocatalytic hydrogen-production performance of graphene-$Zn_xCd_{1-x}S$ composites by using an organic S source, Chem. Eur. J., 20, 1176-1185 (2014).   DOI   ScienceOn
14 D. Li, Z. Wu, C. Xing, D. Jiang, M. Chen, W. Shi, and S. Yuan, Novel $Zn_{0.8}Cd_{0.2}S$/g-$C_SN4$ heterojunctions with superior visible- light photocatalytic activity: Hydrothermal synthesis and mechanism study, J. Mol. Catal. A: Chem., 395, 261-268 (2014).   DOI
15 X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ ans $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010).   DOI   ScienceOn
16 W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem., 112, 16754-16758 (2008).
17 A. Deshpande, P. Shah, R. S. Gholap, and N. M. Gupta, Interfacial and physico-chemical properties of polymer-supported CdS${\cdot}$ZnS nanocomposites and their role in the viisble-light mediated photocatalytic splitting of water, J. Colloid Interface Sci., 333, 263-268 (2009).   DOI   ScienceOn
18 K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010).   DOI   ScienceOn
19 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater., 13, 113-116 (2001).   DOI
20 Y. Li, M. Ye, C. Yang, X. Li, and Y. Li, Composition- and shape-controlled synthesis and optical properties of $Zn_xCd_{1-x}S$ alloyed nanoparticles, Adv. Funct. Mater., 15, 433-441 (2005).   DOI   ScienceOn
21 S. K. Kulkarni, U. Winkler, N. Deshmukh, P. H. Borse, R. Funk, and E. Umbach, Investigations on chemically capped CdS, ZnS and ZnCdS nanoparticles, Appl. Surf. Sci., 169-170, 438-446 (2001).   DOI   ScienceOn
22 S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, Strategies of making $TiO_2$ and ZnO visible light active, J. Hazard. Mater., 170, 560-569 (2009).   DOI   ScienceOn
23 S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013-1098 (2011).   DOI
24 K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009).   DOI   ScienceOn
25 S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and $TiO_2$, Sol. Energy Mater. Sol. Cells, 77, 65-82 (2003).   DOI   ScienceOn
26 N. Barka, S. Qourzal, A. Assabbane, A. Nounah, and Y. Ait-Ichou, Factors influencing the photocatalytic degradation of Rhodamine B by $TiO_2$-coated non-woven paper, J. Photochem. Photobiol. A: Chem., 195, 346-351 (2008).   DOI
27 W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012).   DOI   ScienceOn
28 Q. Wang, C. Chen, D. Zhao, W. Ma, and J. Zhao, Change of adsorption modes of dyes on fluorinated $TiO_2$ and its effect on photocatalytic degradation of dyes under visible irradiation, Langmuir, 24, 7338-7345 (2008).   DOI   ScienceOn
29 S. C. Yan, Z. S. Li, and Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-$C_3N_4$ under visible light irradiation, Langmuir, 26, 3894-3901 (2010).   DOI   ScienceOn
30 J. Low, J. Yu, Q, Li, and B. Cheng, Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified $Bi_2WO_6$ nanosheets, Phys. Chem. Chem. Phys., 16, 1111-1120 (2014).   DOI
31 W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradation, Appl. Surf. Sci., 271, 171-181 (2013).   DOI   ScienceOn