DOI QR코드

DOI QR Code

Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method

단순 침전법으로 제조한 가시광선용 CdZnS/ZnO 광촉매의 재활용 특성

  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.01.10
  • Accepted : 2017.02.27
  • Published : 2017.06.30

Abstract

CdZnS/ZnO composite was prepared through low-temperature precipitation and drying method. The property of CdZnS/ZnO as a recyclable photocatalyst for the degradation of rhodamine B (RhB) under visible light irradiation was examined. The sample was characterized by XRD, FE-SEM, XPS, UV-vis DRS and photoluminescence techniques before and after repeated reaction to investigate the change of properties during the photocatalytic reaction. During repeated reaction, the CdZnS/ZnO showed an improved photocatalytic activity and recycle stability. Among two feasible reaction pathways for photocatalytic degradation of RhB, the cleavage of conjugated chromophore was found to predominate over N-dealkylation of chromophore skeleton in the present work. The results indicate that the CdZnS/ZnO, prepared by a simple precipitation method, can be used as a visible-light driven photocatalyst with enhanced cycle stability and activity.

CdZnS/ZnO 복합체를 저온에서의 침전 및 건조 과정을 거쳐 제조한 다음, 가시광선 조사하에서 로다민 B 염료의 광분해에 대한 광촉매로서의 활성 특히 광촉매 재활용 특성에 대해 중점을 두고 고찰하였다. 광반응 과정에서의 광촉매 변화를 조사하기 위해 X선 회절분석기, 전계방사형 주사전자현미경, X-선 광전자 분광법, UV-vis 확산반사 분광법 그리고 광자발광 분광기 등을 이용하여 반응 전후의 광촉매 시료에 대해 물성분석을 행하였다. 계속적으로 반복되는 반응을 통하여 CdZnS/ZnO 광촉매는 보다 향상되고 안정된 활성을 나타냄을 볼 수 있었다. 로다민 B의 광분해반응에 대해 가능한 두 가지의 반응기구 중에서도 본 연구에서는 발색단 골격의 탈알킬화 반응보다는 발색단 콘쥬케이트 구조의 절단 과정을 거쳐 주로 반응이 진행되는 것으로 확인되었다. 이러한 결과들로부터 단순 침전법으로 용이하게 제조할 수 있는 CdZnS/ZnO는 비교적 높은 활성과 재활용성을 지닌 가시광선용 광촉매로 사용 가능하다는 것을 알 수 있었다.

Keywords

References

  1. Etacheri, V., Valentin, C. D., Schneider, J., Bahnemann, D., and Pillai, S. C., "Visible-Light Activation of $TiO_2$ Photocatalysts: Advances in Theory and Experiments," J. Photochem. Photobiol. C: Photochem. Rev., 25, 1-29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  2. Kumar, S. G., and Devi, L. G., "Review on Modified $TiO_2$ Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics," J. Phys. Chem. A, 115, 13211-13241 (2011). https://doi.org/10.1021/jp204364a
  3. Hernandez-Ramirez, A., and Medina-Ramirez, I., in: Hernandez-Ramirez, A., and Medina-Ramirez, I., Eds., Semiconducting Materials in Photocatalytic Semiconductors, Synthesis, Characterization, and Environmental Applications, Springer, Switzerland, pp. 1-40 (2015).
  4. Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., "Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution," Sci. Rep., 6, 22268 (2016). https://doi.org/10.1038/srep22268
  5. Zhu, H., Jianga, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G., "Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/Nano-CdS Composite Catalyst under Visible Light Irradiation," J. Hazard. Mater., 169, 933-940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037
  6. Fan, Y., Deng, M., Chen, G., Zhang, Q., Luo, Y., Li, D., and Meng, Q., "Effect of Calcination on the Photocatalytic Performance of CdS under Visible Light Irradiation," J. Alloy. Compd., 509, 1477-1481 (2011). https://doi.org/10.1016/j.jallcom.2010.10.044
  7. Chen, F., Jia, D., Cao, Y., Jin, X., and Liu, A., "Facile Synthesis of CdS Nanorods with Enhanced Photocatalytic Activity," Ceram. Int., 41, 14604-14609 (2015). https://doi.org/10.1016/j.ceramint.2015.07.179
  8. Sehati, S., and Entezari, M. H., "Sono-intercalation of CdS Nanoparticles into the Layers of Titanate Facilitates the Sunlight Degradation of Congo Red," J. Colloid Interface Sci., 462, 130-139 (2016). https://doi.org/10.1016/j.jcis.2015.09.070
  9. Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J., "$Cd_{0.5}Zn_{0.5}S$ Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic $H_2$-Production Activity," ACS Catal., 3, 882-889 (2013). https://doi.org/10.1021/cs4000975
  10. Zhou, Y., Wang, Y., Wen, T., Zhang, S., Chang, B., and Guo, Y., "Mesoporous $Cd_{1-x}Zn_xS$ Microspheres with Tunable Bandgap and High Specific Surface Areas for Enhance Visible-Light-Driven Hydrogen Generation," J. Colloid Interface Sci., 467, 97-104 (2016). https://doi.org/10.1016/j.jcis.2016.01.003
  11. Li, N., Zhou, B., Guo, P., Zhou, J., and Jing, D., "Fabrication of Noble-Metal-Free $Cd_{0.5}Zn_{0.5}S$/NiS Hybrid Photocatalysts for Efficient Solar Hydrogen Evolution," Int. J. Hydrogen Energy, 38, 11268-11277 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.067
  12. Xiong, Z., Zheng, M., Zhu, C., Zhang, B., Ma, L., and Shen, W., "One-Step Synthesis of Highly Efficient Three-Dimensional $Cd_{1-x}Zn_xS$ Photocatalysts for Visible Light Photocatalytic Water Splitting," Nanoscale Res. Lett., 8, 334-339 (2013). https://doi.org/10.1186/1556-276X-8-334
  13. Huang, M., Yu, J., Deng, C., Huang, Y., Fan, M., Li, B., Tong, Z., Zhang, F., and Dong, L., "3D Nanospherical $Cd_xZn_{1-x}S$/Reduced Graphene Oxide Composites with Superior Photocatalytic Activity and Photocorrosion Resistance," Appl. Surf. Sci., 365, 227-239 (2016). https://doi.org/10.1016/j.apsusc.2015.12.244
  14. Wang, X., Tian, H., Cui, X., Zheng, W., and Liu, Y., "One- Pot Hydrothermal Synthesis of Mesoporous $Zn_xCd_{1-x}S$/Reduced Graphene Oxide Hybrid Material and Its Enhanced Photocatalytic Activity," Dalton Trans., 43, 12894-12903 (2014). https://doi.org/10.1039/C4DT01094A
  15. Narayanam, P. K., Soni, P., Srinivasa, R. S., Talwar, S. S., and Major, S. S., "Strong and Tunable Blue Luminescence from $Cd_{1-x}Zn_xS$ Alloy Nanocrystallites Grown in Langmuir-Blodgett Multilayers," J. Phys. Chem., C, 117, 4314-4325 (2013). https://doi.org/10.1021/jp312546a
  16. Min, Y., Fan, J., Xu, Q., and Zhang, S., "High Visible-Photoactivity of Spherical $Cd_{0.5}Zn_{0.5}S$ Coupled with Grahpene Composite for Decolorizing Organic Dyes," J. Alloy. Compd., 609, 46-53(2014). https://doi.org/10.1016/j.jallcom.2014.04.143
  17. Zhang, J., Xu, Q., Qiao, S. Z., and Yu, J., "Enhanced Visible-Light Hydrogen‐Production Activity of Copper‐Modified $Zn_xCd_{1-x}S$," ChemSusChem, 6, 2009-2015 (2013). https://doi.org/10.1002/cssc.201300409
  18. Lee, H. J., Jin, Y., Park, S. S., Hong, S. S., and Lee, G. D., "Photocatalytic Degradation of Rhodamine B Using $Cd_{0.5}Zn_{0.5}S$/ZnO Photocatalysts under Visible Light Irradiation," Appl. Chem. Eng., 26, 356-361 (2015). https://doi.org/10.14478/ace.2015.1046
  19. McBride, R. A., Kelly, J. M., and McCormack, D. E., "Growth of Well-Defined ZnO Microparticles by Hydroxide Ion Hydrolysis of Zinc Salts," J. Mater. Chem., 13, 1196-1201 (2003). https://doi.org/10.1039/b211723c
  20. Khan, Z. R., Zulfequar, M., and Khan, M. S., "Chemical Synthesis of CdS Nanoparticles and Their Optical and Dielectric Studies," J. Mater, Sci., 46, 5412-5416(2011). https://doi.org/10.1007/s10853-011-5481-0
  21. Sepulveda-Guzman, S., Reeja-Jayan, B., de la Rosa, E. Torres-Castro, A. Gonzalez-Gonzalez, V., and Jose-Yacaman, M., "Synthesis of Assembled ZnO Structures by Precipitation Method in Aqueous Media," Mater. Chem. Phys., 11, 172-178 (2009).
  22. Kozlova, E. A., Markovskaya, D. A., Cherepanova, S. V., Saraev, A. A., Gerasimov, E. Y., Perevalov, T. V., Kaichev, V. V., and Parmon, V. N., "Novel Photoctalysts Based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the Hydrogen Evolution from Water Solution of Ethanol," Int. J. Hydrogen Energy, 39, 18758-18769 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.145
  23. Xie, S., Lu, X., Zhai, T., Gan, J., Li, W., Xu, M., Yu, M., Zhang, Y.-M., and Tong, Y., "Controllable Synthesis of $Zn_xCd_{1-x}S$@ZnO Core-Shell Nanorods with Enhanced Photocatalytic Activity," Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624
  24. Wang, W., Zhu, W., and Xu, H., "Monodisperse, Mesoporous $Zn_xCd_{1-x}S$ Nanoparticles as Stable Visible-Light-Driven Photocatalysts," J. Phys. Chem. C, 112, 16754-16758 (2008). https://doi.org/10.1021/jp805359r
  25. Cui, W., Ma, S., Liu, L., Hu, J., Liang, Y., and McEvoy, J. G., "Photocatalytic Activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for Rhodamine B Degradation under Visible Light Irradiation," Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156
  26. Li, D., Wu, Z., Xing, C., Jiang, D., Chen, M., Shi, W., and Yuan, S., "Novel $Zn_{0.8}Cd_{0.2}S/g-C_SN4$ Heterojunctions with Superior Visible-Light Photocatalytic Activity: Hydrothermal Synthesis and Mechanism Study," J. Mol. Catal. A: Chem., 395, 261-268 (2014). https://doi.org/10.1016/j.molcata.2014.08.036
  27. Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,' Adv. Mater., 13, 113-116 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  28. Li, Y., Ye, M., Yang, C., Li, X., and Li, Y., "Composition- and Shape-Controlled Synthesis and Optical Properties of Alloyed Nanoparticles," Adv. Funct. Mater., 15, 433-441 (2005). https://doi.org/10.1002/adfm.200400320
  29. Kulkarni, S. K., Winkler, U., Deshmukh, N., Borse, P. H., Funk, R., and Umbach, E., "Investigations on Chemically Capped CdS, ZnS and ZnCdS Nanoparticles," Appl. Surf. Sci., 169-170, 438-446 (2001). https://doi.org/10.1016/S0169-4332(00)00700-5
  30. Xu, X., Lu, R., Zhao, X., Zhu, Y., Xu, S., and Zhang, F., "Novel Mesoporous $Zn_xCd_{1-x}S$ Nanoparticles as Highly Efficient Photocatalysts," Appl. Catal. B: Environ., 125, 11-20 (2012). https://doi.org/10.1016/j.apcatb.2012.05.018
  31. Shouli, B., Xin, L., Dianqing, L., Song, C., Ruixian, L., and Aifan, C., "Synthesis of ZnO Nanorods and Its Application in $NO_2$ Sensors," Sens. Actuators B, 153, 110-116(2011). https://doi.org/10.1016/j.snb.2010.10.010
  32. Liangyuan, C., Zhiyong, L., Shouli, B., Kewei, Z., Dianqing, L., Aifan, C., and Liu, C. C., "Synthesis of 1-Dimensional ZnO and Its Sensing Property for CO," Sens. Actuators B, 143, 620-628 (2010). https://doi.org/10.1016/j.snb.2009.10.009
  33. Li, W. J., Shi, E. W., Zhong, W. Z., and Yin, Z. W., "Growth Mechanism and Growth Habit of Oxide Crystals," J. Crystal Growth, 203, 186-196 (1999). https://doi.org/10.1016/S0022-0248(99)00076-7
  34. De la Rosa, E., Sepulveda-Guzman, S., Reeja-Jayan, B., Torres, A., Salas, P., Elizondo, M., and Jose-Yacaman, M., "Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods," J. Phys. Chem. C, 111, 8489-8495 (2007). https://doi.org/10.1021/jp071846t
  35. Wahab, R. Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., and Shin, H.-S., "Low Temperature Solution Synthesis and Characterization of ZnO Nano-Flowers," Mater. Res. Bull., 42, 1640-1648 (2007). https://doi.org/10.1016/j.materresbull.2006.11.035
  36. Zhang, J., Yu, J., Jaroniec, M., and Gong, J. R., "Noble Metal-Free Reduced Graphehe Oxide-$Zn_xCd_{1-x}S$ Nanocomposite with Enhanced Solar Photocatalytic $H_2$-Production," Nano Lett., 12, 4584-4589 (2012). https://doi.org/10.1021/nl301831h
  37. Yu, K. Yang, S., He, H., Sun, C., Gu, C., and Ju, Y., "Visible Light-Driven Photocatalytic Degradation of Rhodamine B over $NaBiO_3$: Pathways and Mechanism," J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e
  38. Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., "Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous $TiO_2$ Dispersions," J. Phys. Chem. B, 102, 5845-5851 (1998). https://doi.org/10.1021/jp980922c
  39. Kozlova, E. A., Cherepanova, S. V., Markovskaya, D. V., Saraev, A. A., Gerasimov, E. Y., and Parmon, V. N., "Novel Photocatalysts $Pt/Cd_{1-x}Zn_xS/ZnO/Zn(OH)_2$: Activation during Hydrogen Evolution from Aqueous Solutions of Ethanol under Visible Light," Appl. Catal. B: Environ., 183, 197-205 (2016). https://doi.org/10.1016/j.apcatb.2015.10.042
  40. Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., Domen, K., and Li, C., "Photocatalytic Water Reduction under Visible Light on a Novel $ZnIn_2S_4$ Catalyst Synthesized by Hydrothermal Method," Chem. Commun., 2142-2143 (2003).
  41. Wei, S., Shifu, C., Sujuan, Z., Wei, Z., Huaye, Z., and Xiaoling, Y., "Preparation and Characterization of p-n Heterojunction Photocatalyst $p-CuBi_2O_4/n-TiO_2$ with High Photocatalytic Activity under Visible and UV Light Irradiation," J. Nanopart. Res., 12, 1355-1366 (2010). https://doi.org/10.1007/s11051-009-9672-4
  42. Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., and Li, C., "Enhancement of Photocatalytic $H_2$ Evolution on CdS by Loading $MoS_2$ as Cocatalyst under Visible Light Irradiation," J. Am. Chem. Soc., 130, 7176-7177 (2008). https://doi.org/10.1021/ja8007825
  43. Huang, H., Li, D., Lin, Q., Zhang, W., Shao, Y., Chen, Y., Sun, M., and Fu, X., "Efficient Degradation of Benzene over $LaVO_4/TiO_2$ Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation," Environ. Sci. Technol., 43, 4164-4168 (2009). https://doi.org/10.1021/es900393h
  44. Chen, C., Zhao, W., Li, J., and Zhao, J., "Formation and Identification of Intermediates in Visible-Light-Assisted Photogegradation of Sulforhodamine-B Dye in Aqueous $TiO_2$ Dispersion," Environ. Sci. Technol., 36, 3604-3611 (2002). https://doi.org/10.1021/es0205434
  45. Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., and Liu, P., "Photocatalytic Degradation of RhB over $TiO_2$ Bilayer Films: Effect of Defects and Their Location," Langmuir, 26, 9686-9694 (2010). https://doi.org/10.1021/la100302m
  46. Cruz, A. M., and Perez, U. M. G., "Photocatalytic Properties of $BiVO_4$ Prepared by the Co-precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation," Mater. Res. Bull., 45, 135-141 (2010). https://doi.org/10.1016/j.materresbull.2009.09.029
  47. Chen, F. Zhao, J., and Hidaka, H., "Highly Selective Deethylation of Rodamine B: Adsorption and Photooxidation Pathways of the Dye on the $TiO_2/SiO_2$ Composite Photocatalyst," Int. J. Photoenergy, 5, 209-217 (2003). https://doi.org/10.1155/S1110662X03000345
  48. Takirawa, T., Watanabe, T., and Honda, K., "Photocatalysis through Excitation of Adsorbates. 2. A Comparative Study of Rhodamine B and Methylene Blue on Cadmium Sulfide," J. Phys. Chem., 82, 1391-1396 (1978). https://doi.org/10.1021/j100501a014
  49. Li, X., and Ye, J., "Photocatalytic Degradation of Rhodamine B over $Pb_3Nb_4O_{13}$/Fumed $SiO_2$ Composite under Visible Light Irradiation," J. Phys. Chem. C., 111, 13109-13116 (2007). https://doi.org/10.1021/jp072752m
  50. Merka, O., Yarovyi, V., Bahnemann, D.W., and Wark, M., "pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over $Pb_3Nb_4O_{13}$," J. Phys. Chem. C., 115, 8014-8023 (2011).

Cited by

  1. 가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응 vol.26, pp.4, 2017, https://doi.org/10.7464/ksct.2020.26.4.311