• Title/Summary/Keyword: 광물 표면

Search Result 344, Processing Time 0.028 seconds

Applicability Evaluation after Treated with Consolidant of 0.8T0.2E1G_3wt0.08% and 1T1G_7wt0.08% on Marble Surface (강화제 0.8T0.2E1G_3wt0.08%와 1T1G_7wt0.08%의 대리암에 대한 적용성 평가)

  • Do, Jin Young;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.187-194
    • /
    • 2017
  • In this study, marble that consist mainly of calcite were used for applicability evaluation after treated with consolidant such as alkoxysilane series of 0.8T0.2E1G_3wt0.08% and 1T1G_7wt0.08%. The position and intensity of X-ray diffraction peaks are no change and increasing trend after treated with two consolidants. The results of scanning electron microscopic analysis, morphology of rope type and homogeneous surface of platy or leaflike form observed on the marble after treated with 0.8T0.2E1G_3wt0.08% and 1T1G_7wt0.08%, respectively. Brightness of surface after treated with consolidant are changing slightly dark. Shore hardness and ultrasonic velocity values show increasing after treated on the marble surface with two consolidants.

Characteristics of Zeolites (Zeolite의 특성)

  • Im, Goeng
    • The Journal of Natural Sciences
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 1993
  • Zeolites were discovered as a natural mineral more than two hundred ago. In the beginning, the mineral was used as ion-exchange material and adsorbent. After the end of World War II , however, a variety of zeolites have become available in large amounts because of the establishment of low temperature synthesis and the discobery of natural zeolite deposits of sedimentary origin. Various uses of xeolite were developed utilizing the unique crystal strucrure and function of these minerals. In connection with this development remakable progress has also been made in basic stuides on the related geology and mineralogy, crystallization from sols and gels, structure, ion exchange, adsorption and cataiysis. As a result, zeolites, which had been known only as mineral specimens displayed in museums. established a firm position among the high-technology masterials with excellent functional capabilities.

  • PDF

A Classical Molecular Dynamics Study of the Mg2+ Coordination in Todorokite (토도로카이트 내 Mg2+ 배위구조에 대한 고전분자동력학 연구)

  • Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.151-162
    • /
    • 2019
  • Todorokite, a tunnel-structured manganese oxide, can contain cations within the relatively large nanopores created by the $3{\times}3$ Mn octahedra. Because todorokite is poorly crystalline and found as aggregates mixed with other phases of Mn oxides in nature, the coordination structure of cations in the nanopores is challenging to fully characterize in experiment. In the current article, we report the atomistic coordination structures of $Mg^{2+}$ ions in todorokite tunnel nanopores using the classical molecular dynamics (MD) simulations. In experiment, $Mg^{2+}$ is known to occupy the center of the nanopores. In our MD simulations, 60 % of $Mg^{2+}$ ions were located at the center of the nanopores; 40 % of the ions were found at the corners. All $Mg^{2+}$ located at the center formed the six-fold coordination with water molecules, just as the ion in bulk aqueous solution. $Mg^{2+}$ ions at the corners also formed the six-fold coordination with not only water molecules but also Mn octahedral surface oxygens. The mean squared displacements were calculated to examine the dynamic features of $Mg^{2+}$ ions in the one-dimensional (1D) nanopores. Our MD simulations indicate that the dynamic features of water molecules and the cations observed in bulk aqueous solution are lost in the 1D nanopores of todorokite.

Formation of Clay Minerals by Water-Rock Interaction in the Fracture of Gneiss (편마암 열극에서의 물-암석 상호반응에 의한 점토광물 생성)

  • Jeong, Chan-Ho;Kim, Soo-Jin;Koh, Yong-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.49-61
    • /
    • 1994
  • As the groundwater flows along the fractures of crystalline rocks, it will be in contact with the fracture walls mostly coated by secondary minerals which are quite different form those of host rocks. The presence of fracture-filling minerals in crystalline rocks is important on the view point of radioactive waste disposal because of their great surface reactivity. The Surichi drill hole of 200 m in depth in the Yugu area composed mainly of Precambrian gneiss was selected to study the formation process of clay minerals on the fracture wall of gneiss, and their relation with present groundwater. The water-rock interaction in fractures resulted in the formation of gibbsite and clay minerals. They are formed by two different processes : (1) Incongruent dissolution of feldspar by groundwater diffused from a fracture path into rock matrix produced smectite and illite in situ, (2) on the wall of fracture, gibbsite, kaolinite, smectite and illite are formed by precipitation of dissolved species in groundwater. They show the paragenetic sequence such as gibbsite${\leftrightarrow}$kaolinite${\leftrightarrow}$smectite or illite. The paragenetic sequence of fracture-filling minerals was controlled by increase of pH of groundwater, decrease of fracture permeability by precipitation of fillings, and immobility of alkali or alkaline earths in groundwater. The groundwater from the Surichi borehole is a $Na-HCO_{3}$ type with pH range of 8.6-9.2. The sodium and bicarbonate in groundwater would be supplied by the dissolution of albite and calcite, respectively. The saturation index of groundwater and surface water calculated by WATEQ4F indicates that gibbsite and kaolinite are under precipitation to equilibrium state, and that smectite and illite are under equilibrium to redissolution environment. The stability relation of clay minerals in the $Na_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$ system shows that kaolinite is stable for all waters.

  • PDF

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage (문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Ji-Woo;Ju, Ji-Yeon;Hwang, Su-Hyeon;Kim, Yeongkyoo;Park, Changyun;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.355-365
    • /
    • 2022
  • Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

Characteristics of surface pollutants on stone materials and its cleaning measures in Gyeongju Soekbinggo (경주석빙고 구성석재에 형성된 표면오염물의 특징과 그 제거방안)

  • Do, Jinyoung
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2005.03a
    • /
    • pp.71-88
    • /
    • 2005
  • With biological organism brown pollutants layers are thickly formed on inner stone materials in Gyeongjuseokbinggo(Ice storage in Gyeongju). Some simples were taken from this layer and its chemical composition, mineral composition, salt and microstructures were analyzed. This study shows that the pollutants layer can be removed easily, because it attached softly in stone surface. But because of its serious weathering state the stone surface also can be removed during the removing process. The origins of brown layer are assumed to be the soil in the mound over the Seokbinggo and the coarse sandy soil in the entrance. For the preservation of the Seokbinggo Waterproof and replacement of the coarse sandy soil should take precedence over the remove works. Subsequently moistureproof works should be enforced.

  • PDF

Surface Complexation Modeling of Cadmium Sorption onto Synthetic Goethite and Quartz (표면착물 모델을 이용한 합성 침철광과 석영의 카드뮴 흡착 모사)

  • Ok, Yong-Sik;Jung, Jin-ho;Lee, Ok-Min;Lim, Soo-kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.210-217
    • /
    • 2003
  • An alternative method to the empirical approach such as Langmuir and Freundlich model, surface complexation model using thermodynamic database is used to simulate adsorption behavior of cadmium for oxide minerals. Sorption of cadmium onto amorphous silica ($SiO_2$) and synthetic goethite (${\alpha}$-FeOOH) at various conditions of pH, initial cadmium loading, oxide concentration, and ionic strength, were investigated. For both oxide minerals, increasing cadmium concentration resulted in right shifting of the sorption curve of cadmium as the function of pH. The $pH_{50}$, where 50% of cadmium sorbed, of goethite (pH 5.25) was much smaller than that of the silica (pH 7.83). The sorption of cadmium onto both minerals were not affected by the background ion strength from $10^{-1}$ to $10^{-2}$ M of $KNO_3$. It indicated that the binding affinity of goethite surface for cadmium is much stronger than that of silica. The strong affinity of oxide mineral for cadmium can be explained by the existence of coordination or covalent bond between cadmium and surface of it.

Interpretation of Physical Weathering and Deterioration Mechanism for Thermal Altered Pelitic Rocks: Ulju Cheonjeon-ri Petroglyph (열변질 이질암의 물리적 풍화작용과 손상메커니즘 해석: 울주 천전리 각석)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.629-646
    • /
    • 2023
  • Host rock of Cheonjeon-ri petroglyph is shale belonging to the Daegu Formation of Cretaceous Gyeongsang Supergroup. The rocks were hornfelsified by thermal alteration, and shows high density and hardness. The petroglyph forms weathered zone with certain depth, and has difference in mineral and chemical composition from the unweathered zone. As the physical deterioration evaluations, most of cracks on the surface appear parallel to the bedding, and are concentrated in the upper part with relatively low density. Breakout parts are occurred in the upper and lower parts of the petroglyph, accounting for 6.0% of the total area and occurs to have been created by the wedging action of cracks crossing. The first exfoliation parts occupying the surface were 23.8% of the total area, the second exfoliations covered with 9.3%, and the exfoliation parts with three or more times were calculated as 3.4%. It is interpreted that this is not due to natural weathering, and the thermal shock caused by the cremation custom here in the past. As the ultrasonic properties, the petroglyph indicates highly strength in the horizontal direction parallel to bedding, and the area with little physical damage recorded mean of 4,684 m/s, but the area with severe cracks and exfoliations showed difference from 2,597 to 3,382 m/s on average. Physical deterioration to the Cheonjeon-ri petroglyph occurred to influence by repeated weathering, which caused the rock surface to become more severe than the inside and the binding force of minerals to weaken. Therefore, it can be understood that when greater stress occurs in the weathered zone than in the unweathered zone, the relatively weathered surface loses its support and exfoliation occurs.

Formation of Alunite and Schwertmannite under Oxidized Condition and Its Implication for Environmental Geochemistry at Dalseong mine (산화환경하에서 명반석, 슈베르트마나이트의 형성특징과 환경지구화학적 의미: 달성광산)

  • 추창오;이진국;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Sulfates such as alunite and schwertmannite formed under oxidation condition play a important role in geochemical processes taken place at waste dumps and a creek from Dalseong mine, Daegu. Water chemistry shows pH decreases from upstream toward downstream creek, mainly due to formation of schwertmannite that is the most abundant phase along the creek. The removal of Al from the creek is preferentially attributed to formation of Al-bearing minerals and Al-sulphates. Among them, alunite is the most important Al-sink phase that occurs at higher pH than $pK_1$, Al hydrolysis constant. With high saturation index, alunite formed at the creek has a spherical form, commonly associated with schwertmannite. Secondary minerals formed on the surface of altered or weathered surfaces of heavy metals from the wasted dump that underwent severe oxidation, where alunite has characteristic habits which are spheric, radiating, and botrytis-like aggregates. Natroalunite occurs in association with alunite, or as mixtures of both of them. Because the pH decreases with distance due to formation of schwertmannite, although total contents of dissolved ions slowly lessen at least in the AMD, it is expected that the minerals precipitated at the creek can be exposed to subsequent dissolution, which may induce possible environmental problems.

Characteristics of Mineralogy and Nanocrystals of Ingredient Materials of $Lumilite^{(R)}$ for Water Treatment (수질개선제 $Lumilite^{(R)}$ 원료광물의 광물학적 및 나노결정학적의 특징)

  • Lee, Jin-Kook;Park, Hi-Ho;Choo, Chang-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • Characterization of mineralogy and nanocrystals of ingredient materials of $Lumilite^{(R)}$ used for water treatment was made using optical microscopy, XRD, SEM, FTIR, and XRF analyses. Constituent minerals identified by XRD and microscope are clinoptilolite, illite, quartz, and albite, characterized by dense and fine texture. The cross section of nanocrystals with the size $70{$\sim}100\;nm$ is generally round or subround. Numerous spheroids with few nanometers in diameter are extensively formed on the surface of nanocrystals. Bulk chemistry is $SiO_2$ $74.22{\sim}75.65\;wt.%$, $Al_2O_3$ $13.25{\sim}13.72\;wt.%$, CaO $4.23{\sim}5.15\;wt.%$, with other major elements being minimal. When heated to $700^{\circ}C$, the crystal structure was mostly destroyed, though it persisted to $500^{\circ}C$. It is likely that high capacity and applications of $Lumilite^{(R)}$ for water treatment are originated from its structural properties such as development of nanocrystals and various tiny pores.