Surface Complexation Modeling of Cadmium Sorption onto Synthetic Goethite and Quartz

표면착물 모델을 이용한 합성 침철광과 석영의 카드뮴 흡착 모사

  • Ok, Yong-Sik (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Jung, Jin-ho (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Lee, Ok-Min (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Lim, Soo-kil (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Sciences and Ecological Engineering, Korea University)
  • 옥용식 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 정진호 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 이옥민 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 임수길 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Received : 2003.07.07
  • Accepted : 2003.07.24
  • Published : 2003.08.30

Abstract

An alternative method to the empirical approach such as Langmuir and Freundlich model, surface complexation model using thermodynamic database is used to simulate adsorption behavior of cadmium for oxide minerals. Sorption of cadmium onto amorphous silica ($SiO_2$) and synthetic goethite (${\alpha}$-FeOOH) at various conditions of pH, initial cadmium loading, oxide concentration, and ionic strength, were investigated. For both oxide minerals, increasing cadmium concentration resulted in right shifting of the sorption curve of cadmium as the function of pH. The $pH_{50}$, where 50% of cadmium sorbed, of goethite (pH 5.25) was much smaller than that of the silica (pH 7.83). The sorption of cadmium onto both minerals were not affected by the background ion strength from $10^{-1}$ to $10^{-2}$ M of $KNO_3$. It indicated that the binding affinity of goethite surface for cadmium is much stronger than that of silica. The strong affinity of oxide mineral for cadmium can be explained by the existence of coordination or covalent bond between cadmium and surface of it.

산화물에 대한 카드뮴의 흡착특성을 모사하기 위하여 토양에 존재하는 대표적 산화광물인 침철광과 석영을 대상으로 회분형 카드뮴 흡착실험을 수행하였다. 토양 광물에 대한 카드뮴의 흡착을 예측하기 위해 기존의 경험적 흡착모델 대신 표면착물 모델을 적용하였다. 모델을 검증하기 위하여 카드뮴의 흡착에 영향을 미치는 pH, 중금속 농도, 산화물 농도 및 이온강도 등의 인자를 조절하며, 다양한 조건하에서 회분형 흡착실험을 수행하였다. 실험결과, 카드뮴의 농도가 증가함에 따라 pH에 따른 흡착 곡선은 알칼리 쪽으로 평행하게 이동하였다. 흡착 실험으로부터 계산한 50%의 카드뮴이 흡착되는 pH인 $pH_{50}$은 합성 침철광이 5.25로 석영의 7.83에 비해 매우 낮아 카드뮴에 대한 표면 결합력이 석영에 비해 합성 침철광이 우세함을 시사하였고 이는 모델의 모사 결과와도 잘 부합하였다. 또한 배경전해질로 사용한 $KNO_3$의 이온강도는 카드뮴의 흡착에 영향을 미치지 않았다. 따라서 카드뮴은 산화광물 표면에 내부이온흡착 메커니즘에 의하여 흡착되는 것으로 판단할 수 있었다.

Keywords

References

  1. Allison, J.D., D.S. Brown, and K.J. Novo-Gradac. 1991 MINTEQA2/PR0DEPA2, Geochemical assessment model for environmental systems : version 3.0 user's manual, EPA/600/3-91/021
  2. Bowden, J.W., S. Nagarajah, N.J. Barrow, A.M. Posner, and J.P. Quirk. 1980a. Describing the adsorption of phosphate, citrate and selenite on a variable mineral charge surface Aust. J. Soil. Res. 18:49-60 https://doi.org/10.1071/SR9800049
  3. Bowden, J.W., A.M. Posner, and J.P. Quirk. 1980b Adsorption and charging phenomena in variable charge soils, p. 147. In B.K.G. Theng (ed.) Soils with Variable Charge, New Zealand Soc. Soil Sci. Lower Hutt, New Zealand
  4. Dixon, J.D., and G.N. White. 1997. Soil mineralogy laboratory mannual. Dept. of Soil and Crop Sci., Texas A&M Univ., College Station, Texas, USA
  5. Goldberg, S. 1992. Use of surface complexation models in soil chemical systems. Adv. Agron. 47:233-329 https://doi.org/10.1016/S0065-2113(08)60492-7
  6. Hayes, K.F., A.L. Roe. G.E. Brown, K.O. Hodgson Jr., J.O. Leckie, and G.A. Parks. 1987. In-situ X-ray absorption study of surface complexes: Selenium oxyanions on -FeOOH. Science 238:783 https://doi.org/10.1126/science.238.4828.783
  7. Hochellar, M.F., and A.F. White. 1990. Surface complexation modeling on aqueous geochemistry. Mineralogical Society of America. Washington DC, USA
  8. Hyun. S.P. 2000. Soprtion mechanism of U(VI) and Cu(II) at the mineral-water interface. Ph. D. Dissertation, Seoul National Univ., Seoul, Korea
  9. Johnson, B.B. 1990. Effect of pH, temperature and concentration the adsorption of cadmium on goethite. Environ. Sci. Technol. 24:112-116 https://doi.org/10.1021/es00071a014
  10. Kent, D.B., N.B. Tripathi, N.B. Ball, J.O. Leckie, and M.D. Siegel. 1988. Surface complexation modeling of radionuclide adsorption in subsurface environments. NUREG/CR-4807. U.S. Nuclear Regulatory Commission, Washington DC, U.S.A
  11. Lee, S.Z., H.E. Allen, C.P. Huang, D.L. Sparks, P.F. Sanders, and Q.J.G.M. Peijnenburg. 1996. Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol. 30:3418-3424 https://doi.org/10.1021/es9507933
  12. Lim, S.K., C.Y. Chung, Y.S. Ok, and J.G. Kim. 2002. Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat. Korean J. Soil Sci. Fert. 35:344-351
  13. Ok, Y.S. 2003. Empirical and mechanistic approach to adsorption and bioavailability of cadmium in soils and plants: Implications in phytoremedialion. Ph.D. Dissertation, Korea University, Seoul, Korea
  14. Ok, Y.S., Y.S. Choi, S.E. Lee, S.K. Lim, N.H. Chuns, and J.G. Kim. 2001. Effects of soil component and index ion on the surface charge characteristics of some Korean arable soils. Korean J. Soil Sci. Fert. 34:237-244
  15. Park, C.K.. Y.H. Cho, and P.S. Hahn. 1997. Sorption reactions for metals ions onto domestic granites. J. Kor. Solid Wastes Eng. Soc. 14:412-420
  16. Parks, G.A. 1990. Surface energy and adsorption at mineral-water interfaces: an introduction. Vol 23, p. 133-163. In M.F. Hochella Jr. et al. (ed.) Mineral water interface geometry. Mineralogical Society of America, USA
  17. Sposito, G. 1981. Cation exchange in soils: an historical and theoretical perspective. ASA Spec. Publ. No. 40. Agronomy Society of America, Madison, Wisconsin. USA
  18. Thomas, G.W. 1996. Soil pH and soil acidity. p. 475-490. In D. L. Sparks et al. (ed.) Methods of soil analysis, Part 3. Chemical methods. Soil Science Society of America. Madison, Wisconsin, USA
  19. Westall, J.C. 1982. FITEQL, A program for the determination of chemical equilibrium constants from experimental data, Technical Report; Chemistry Department, Oregon State (Jniversity, Corvallis, Oregon. USA
  20. Whittig L.D. and W.R. Alladice. 1986. X-ray diffraction techniques. p. 331-362. In A. Klute et al. (ed.) Methods of soil analysis, Part 1. Physical and mineralogical methods. (2nd ed.). Soil Science Society of America. Madison. Wisconsin, USA