When we estimate an origin-destination matrix from traffic counts. origin-destination matrix estimation from traffic counts according to the selected optimal traffic counting links is method for improving the results of origin-destinaation matrix estimation and for increasing economic efficiency. This paper proposed model of selecting traffic counting links using integer program technique, and selected a traffic counting links using this model, and estimated and origin-destingtion matrix from traffic counts according to the selected optimal traffic counting links. Also, we compared a result of estimating origin-destination matrix from the selected optimal traffic counting links using this model to a result of estimating origin-destination matrix from the randomly selected traffic counting links. The error analysis result was more improved a result of origin-destination matrix estimation using this model than a result of randomly selected links.
In this study, we compared the observed information matrix with the Fisher information matrix to estimate the uncertainty of maximum likelihood estimators of the generalized logistic (GL) distribution. The previous literatures recommended the use of the observed information matrix because this is convenient since this matrix is determined as the part of the parameter estimation procedure and there is little difference in accuracy between the observed information matrix and the Fisher information matrix for large sample size. The observed information matrix has been applied for the generalized logistic distribution based on the previous study without verification. For this purpose, a simulation experiment was performed to verify which matrix gave the better accuracy for the GL model. The simulation results showed that the variance-covariance of the ML parameters for the GL distribution came up with similar results to those of previous literature, but it is preferable to use of the Fisher information matrix to estimate the uncertainty of quantile of ML estimators.
Conventionally the estimation method of the origin-destination Matrix has been developed by implementing the expansion of sampled data obtained from roadside interview and household travel survey. In the survey process, the bigger the sample size is, the higher the level of limitation, due to taking time for an error test for a cost and a time. Estimating the O-D matrix from observed traffic count data has been applied as methods of over-coming this limitation, and a gradient model is known as one of the most popular techniques. However, in case of the gradient model, although it may be capable of minimizing the error between the observed and estimated traffic volumes, a prior O-D matrix structure cannot maintained exactly. That is to say, unwanted changes may be occurred. For this reason, this study adopts a conjugate gradient algorithm to take into account two factors: estimation of the O-D matrix from the conjugate gradient algorithm while reflecting the prior O-D matrix structure maintained. This development of the O-D matrix estimation model is to minimize the error between observed and estimated traffic volumes. This study validates the model using the simple network, and then applies it to a large scale network. There are several findings through the tests. First, as the consequence of consistency, it is apparent that the upper level of this model plays a key role by the internal relationship with lower level. Secondly, as the respect of estimation precision, the estimation error is lied within the tolerance interval. Furthermore, the structure of the estimated O-D matrix has not changed too much, and even still has conserved some attributes.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.3
/
pp.99-106
/
2016
In this paper, we will discuss about correction method of missing data on noisy observation matrix and uncertainty analysis for the potential noise. In situations without missing data in an observation matrix, this solution is known to be accurately induced by SVD (Singular Value Decomposition). However, usually the several entries of observation matrix have not been observed and other entries have been perturbed by the influence of noise. In this case, it is difficult to find the solution as well as cause the 3D reconstruction error. Therefore, in order to minimize the 3D reconstruction error, above all things, it is necessary to correct reliably the missing data under noise distribution and to give a quantitative evaluation for the corrected results. This paper focuses on a method for correcting missing data using geometrical properties between 2D projected object and 3D reconstructed shape and for estimating a noise level of the observation matrix using ranks of SVD in order to quantitatively evaluate the performance of the correction algorithm.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.3
/
pp.527-535
/
2016
Statistical optimization algorithms have been variously developed to estimate the 3D shape and motion. However, statistical approaches are limited to analyze the sensitive effects of SfM(Shape from Motion) according to the camera's geometrical position or viewing angles and so on. This paper propose the quantitative estimation method about the uncertainties of an observation matrix by using camera imaging configuration factors predict the reconstruction ambiguities in SfM. This is a very efficient method to predict the final reconstruction performance of SfM algorithm. Moreover, the important point is that our method show how to derive the active guidelines in order to set the camera imaging configurations which can be expected to lead the reasonable reconstruction results. The experimental results verify the quantitative estimates of an observation matrix by using camera imaging configurations and confirm the effectiveness of our algorithm.
This paper presents inference methods for inner operations of a multi-server queue when historical data are limited or system observation is restricted. In a queueing system analysis, autocorrelated arrival and service processes increase the complexity of modeling. Accordingly, numerous analysis methods have been developed. In this paper, we introduce an inference method for specific situations when external observations exhibit autocorrelated structure and and observations of internal operations are difficult. We release an assumption of the previous method and provide lemma and theorem to guarantee the correctness of our proposed inference method. Using only external observations, our proposed method deduces the internal operation of a multi-server queue via non-parametric approach even when the service times are autocorrelated. The main internal inference measures are waiting times and service times of respective customers. We provide some numerical results to verify that our method performs as intended.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.1
/
pp.9-14
/
2008
This paper presents an observer design methodology for a special class of multi input multi output(MIMO) nonlinear systems. First, we characterize the class of MIMO nonlinear systems with a triangular structure. Also, the observability matrices that plays an important role in proving the convergence of the proposed observer are generalized to MIMO systems. By using the generalized observability matrices, it is shown that under the boundedness conditions of system state and input, the proposed observer guarantees the local exponential convergence to zero of the estimation error.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.193-196
/
2007
본 논문은 관측기 기반 시스템에 대한 강인 디지털 재설계 방안을 제안한다. 디지털 재설계란, 기존의 안정화된 연속시간 플랜트와 이산 시간에서 설계된 디지털 제어기와의 상태 접합 및 안정도 분석을 통해 전체 시스템을 재구성 하는 것을 말한다. 그리고 전 역적 접근을 위한 방안으로서 문제를 볼록 최적화 관점으로 변환 후, 에러가 가질 수 있는 놈의 영역을 최소화 하여 상태 접합을 이루고자 하였다. 본 논문에서는 관측기 기반 시스템에 대한 디지털 재설계를 목표로 하되, 추가적인 파라미터 불확실성을 고려한 강인 디지털 재설계를 구성하게 된다. 파라미터 불확실성은 이산화 과정에서 구조적 형태가 변화하기 때문에, 이를 고려하여 주어진 식을 선형 행렬 부등식 형태로 나타내게 된다. 이 조건들을 통해 디지털 재설계의 상태 접합 및 안정도가 유도 가능하다는 것을 본 논문에서 증명하게 된다.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.5
/
pp.8-12
/
2008
In this paper, the robust state observer for nonlinear systems with unknown disturbance is proposed. The proposed method has an advantage in that it can reduce the effect of disturbance on estimation error of observer up to a specified level. Therefore, our design a roach can deal with a larger class of uncertain nonlinear system than the existing methods. The sufficient conditions on the existence of robust observer are characterized by well grown linear matrix inequality. Finally, an illustrative example is given to verify the proposed design scheme.
We evaluated the availability of Origin-Destination Matrix from traffic counts Using conjugate gradient method to large scale networks by applying it to the networks in 246 zones. As a result of the analysis of the consistency of the model on Nationwide Networks, the upper and lower levels in model had the systematic relationship internally. From the analysis of the estimable power or the model according to the number of traffic counting links, the error in traffic volume had the estimable power in the range of permissible error. In addition, the estimable power of estimation of an Origin-Destination Matrix was more satisfactory than that of existing methods. We conclude that conjugate gradient method cab be applied to nationwide networks if we can make sure that the algorithm of the developed model is reliable by doing various kinds of experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.