• Title/Summary/Keyword: 관성측정 장치

Search Result 145, Processing Time 0.03 seconds

Analysis and Training Contents of Body Balance Ability using Range of Motion of Lumbar Spine and Center of Body Pressure (요추 관절가동범위와 신체압력중심을 이용한 신체균형능력 분석 및 훈련 콘텐츠)

  • Goo, Sejin;Kim, Dong-Yeon;Shin, Sung-Wook;Chung, Sung-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.279-287
    • /
    • 2019
  • In this paper, we attempted to analyze the balance ability of the body by measuring changes in body motion and plantar pressure distribution. So we developed a program that can measure and analyze range of motion and center of body pressure using inertial measurement unit(IMU) and FSR(Force Sensing Resistor) sensor, we also produced a contents that can help improve the balance ability. The quantitative values of range of motion and center of body pressure measured by this program are visualized in real time so that the user can easily recognize the results. In addition, the contents were designed to be adjusted according to the direction of improving the balance ability by adjusting the difficulty level based on the measured balance information. This can be achieved by increasing the concentration and participation will by using visual feedback method that proceeds while watching moving objects according to the user's motion.

Design and Analysis of Square Beam Type Piezo-electric Vibrating Gyroscope (압전세락믹을 이용한 사각보형 진동자이로의 설계, 제작 및 평가)

  • 이정훈;박규연;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.282-286
    • /
    • 1995
  • 일반적으로 관성계 내의 물체에 대한 동적특성의 파악을 위해서는 속도, 가속도 및 각속도, 각가속도에 대한 정보를 필요로 하며 자이로는 이중에서 각속도를 측정하는 장치이다. 운동하는 질량에 회전각속도가 인가될 때 발생되는 코리올리힘을 측정하여 회전각속도를 검출하는 개념의 각속도 센서인 진동자이로는 성능이 회전형 자이로에 비해 떨어지나 구조가 간단하고 소형이며 대량생산이 가능한 장점이 있다. 진동자이로의 효시로는 1950년 영국의 Sperry Gyroscope Company의 "Gyroton"이며, 전자기력을 이용한 가진과 측정이 그 특징으로서 실험실 조건에서 지구의 자전속도를 측정할 수 있었다. 그후 1960년대에 General Electric에서 "VYRO"라는 모델을 개발했는데 압전소자를 이용하여 가진과 측정을 하는 방법이 사용되었다. 1980년대에 Watson Ind., Soderkvist등은 센서자체가 압전물질로 만들어진 자이로를 실험하였고 1990년도에 들어서는 진동자이로의 원리를 마이크로 머시닝 기술과 연계시켜서 소형 경량화와 대량생산을 목표로 연구가 일부 진행되고 있다. 현재 제품화되어 실제 응용되고 있는 예로는 무라다사의 삼각프리즘 형태의 자이로, 토킨사의 원통형 자이로 등이 있으며 이러한 자이로는 캠코더 화면의 안정화 장치에 주로 사용되고 있다. 본 논문에서는 압전소자의 압전, 전왜 방정식으로 출발하여 자이로헤드의 동적 거동을 해석하였다. 진동자이로는 물체의 공진주파수에서의 진동현상을 이용하며, 두 방향의 고유진동수를 일치시켜야 하는 등의 설계조건이 있다. 이러한 조건을 만족하도록 사각보 구조를 기본으로 하여 새로운 형태의 자이로헤드를 고안하였다. 자이로헤드의 구동회로를 설계, 해석하고 각속도를 측정할 수 있는 검출회로를 설계하여 설계된 진동자이로의 동적 특성을 확인하고 보정회로를 이용하여 사용 주파수 영역을 넓혔다.이용하여 사용 주파수 영역을 넓혔다.러한 강이성들이 보장되는 제어이론들 중 H$_{\infty}$ 제어이론이 많이 연구/응용 되고 있다. 특히 공칭 플랜트 모델과 함께 사용되는 플랜트 모델과 함께 사용되는 플랜트 불확실성 모델은 직접적으로 성능 및 안정도에 영향을 미치므로 주의 깊게 선정해야 한다. 방법의 실질적인 적용에는 어려움이 있다. 본 연구에서는 기존의 방법들의 단점을 극복할 수 있는 새로운 회귀적 모우드 변수 규명 방법을 개발하였다. 이는 Fassois와 Lee가 ARMAX모델의 계수를 효율적으로 추정하기 위하여 개발한 뱉치방법인 Suboptimum Maximum Likelihood 방법[5]를 기초로 하여 개발하였다. 개발된 방법의 장점은 응답 신호에 유색잡음이 존재하여도 모우드 변수들을 항상 정확하게 구할 수 있으며, 또한 알고리즘의 안정성이 보장된 것이다.. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the

  • PDF

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

A Test Technique for Performance Evaluation of a Filter and Control Loop on the Missile Vibration using Floating System (부유시스템을 이용한 유도탄 조종루프 진동저감 성능확인 시험기법)

  • Kim, KyungHwan;Park, BumSoo;Lee, Hyun;Kim, SangJae;Chung, JaeWook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2018
  • The acceleration and the angular velocity that include natural frequencies of a missile detected by Inertial Measurement Unit(IMU) are transmitted to the control loop of a missile. The control loop command that is calculated using above signals can cause the resonance of the missile while it flies. Hence it is common to adapt the filter and the control loop for attenuating or eliminating the undesired signals such as natural frequencies. This paper introduces the new test technique using a floating system for performance evaluation of the designed filter and the control loop prior to a flight test. The proposed scheme can check out the degradation property of vibration in the filter and the control loop, while the conventional hardware-in-the-loop simulation(HILS) scheme cannot.

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

Development of the Flexible Observation System for a Virtual Reality Excavator Using the Head Tracking System (헤드 트래킹 시스템을 이용한 가상 굴삭기의 편의 관측 시스템 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2015
  • Excavators are versatile earthmoving equipment that are used in civil engineering, hydraulic engineering, grading and landscaping, pipeline construction and mining. Effective operator training is essential to ensure safe and efficient operating of the machine. The virtual reality excavator based on simulation using conventional large size monitors is limited by the inability to provide a realistic real world training experience. We proposed a flexible observation method with a head tracking system to improve user feeling and sensation when operating a virtual reality excavator. First, an excavation simulator is designed by combining an excavator SimMechanics model and the virtual world. Second, a head mounted display (HMD) device is presented to replace the cumbersome large screens. Moreover, an Inertial Measurement Unit (IMU) sensor is mounted to the HMD for tracking the movement of the operator's head. These signals consequently change the virtual viewpoint of the virtual reality excavator. Simulation results were used to analyze the performance of the proposed system.

Real Time Transporter Locating System for Shipyard through GNSS and IMU Sensor (GNSS와 IMU센서를 활용한 실시간 트랜스포터 위치추적 시스템)

  • Mun, SeungHwan;An, JongWoo;Lee, Jangmyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.439-446
    • /
    • 2019
  • A real time transporter locating system for shipyard has been implemented through the GNSS and IMU sensor. There are a lot of block movements by transporters at the shipyard, which need to be controlled and monitored for conforming to the shipbuilding process. For the precise and safe transporter motion at the yard, a locating system has been developed by using the GNSS and IMU sensors for the transporter. There are several obstacles of the GPS signals for locating the transporter at the yard, such as, buildings and metal structures. To overcome the weakness of the GPS signal transmission, the IMU data have been properly integrated together. The performance of the proposed real time block locating system has been verified through the real experiments with transporters carrying blocks at a shipyard.

Stripping Method of Ring Laser Gyroscope Based on Measurement Model of Dither Motion (디더 운동 측정치 모델 기반 링레이저 자이로 스트리핑 방법)

  • Kim, Cheon-Joong;Shim, Kyu-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2014
  • There are trapping and stripping methods as the technique to remove the dither motion from RLG(Ring Laser Gyro) output. V/F converter output of angular sensor to measure the dither motion is used in stripping method. But bias and scale factor error is always included in V/F converter output and is a critical limiting factor for the wide application of stripping method to RLG. Therefore there have been many researches to solve this problem. The method to accurately estimate the bias and scale factor error of V/F converter using measurements of the angular sensor acquired at data sampling rate of INS is presented in this paper. To this end, stripping technique based on model of dither motion is newly applied.

A Comparison on the Positioning Accuracy from Different Filtering Strategies in IMU/Ranging System (IMU/Range 시스템의 필터링기법별 위치정확도 비교 연구)

  • Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.263-273
    • /
    • 2008
  • The precision of sensors' position is particularly important in the application of road extraction or digital map generation. In general, the various ranging solution systems such as GPS, Total Station, and Laser Ranger have been employed for the position of the sensor. Basically, the ranging solution system has problems that the signal may be blocked or degraded by various environmental circumstances and has low temporal resolution. To overcome those limitations a IMU/range integrated system could be introduced. In this paper, after pointing out the limitation of extended Kalman filter which has been used for workhorse in navigation and geodetic community, the two sampling based nonlinear filters which are sigma point Kalman filter using nonlinear transformation and carefully chosen sigma points and particle filter using the non-gaussian assumption are implemented and compared with extended Kalman filter in a simulation test. For the ranging solution system, the GPS and Total station was selected and the three levels of IMUs(IMU400C, HG1700, LN100) are chosen for the simulation. For all ranging solution system and IMUs the sampling based nonlinear filter yield improved position result and it is more noticeable that the superiority of nonlinear filter in low temporal resolution such as 5 sec. Therefore, it is recommended to apply non-linear filter to determine the sensor's position with low degree position sensors.

Acquisition of 3D Spatial Data for Indoor Environment by Integrating Laser Scanner and CCD Sensor with IMU (실내 환경에서의 3차원 공간데이터 취득을 위한 IMU, Laser Scanner, CCD 센서의 통합)

  • Suh, Yong-Cheol;Nagai, Masahiko
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • 3D data are in great demand for pedestrian navigation recently. For pedestrian navigation, we needs to reconstruct 3D model in detail from people's eye. In order to present spatial features in detail for pedestrian navigation, it is indispensable to develop 3D model not only in outdoor environment but also in indoor environment such as underground shopping complex. However, it is very difficult to acquire 3D data efficiently by mobile mapping without GPS. In this research, 3D shape was acquired by Laser scanner, and texture by CCD(Charge Coupled Device) sensor. Continuous changes position and attitude of sensors were measured by IMU(Inertial Measurement Unit). Moreover, IMU was corrected by relative orientation of CCD images without GPS(Global Positioning System). In conclusion, Reliable, quick, and handy method for acquiring 3D data for indoor environment is proposed by a combination of a digital camera and a laser scanner with IMU.

  • PDF