• Title/Summary/Keyword: 과학 탐구 기능

Search Result 160, Processing Time 0.025 seconds

A development and evaluation of new training program for science teacher - focused on computer simulation inquiry experiments in physics - (새로운 과학 교육 프로그램의 개발과 평가 I - 컴퓨터 시뮬레이션을 이용한 물리 탐구 실험 연수를 중심으로 -)

  • Park, Jong-Won;Oh, Hee-Gyun;Kim, Doo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.653-664
    • /
    • 1999
  • This study was designed to develope an in-service training programme using Interactive $Physics^{TM}$ simulation for science teachers and to evaluate the effect of programme. The purposes of training programme are the improvement of scientific inquiry teaching ability as well as enhancement of the understanding of scientific concepts, inquiry skills, and the computer manipulation skills. The developed programme was implemented four times with 15 hours for each courses. The questionnaire for evaluating the programme after the last course showed that many teachers (1) voluntarily participated in this programme with internal motivation, (2) were satisfied with the level of programme difficulty, professionality of lecturer, and classroom environment, (3) gave positive responses about the achievement of the purposes of this programme, (4) showed strong intention for applying simulation to their school teaching. And future studies were proposed.

  • PDF

Developing a Scientific Creativity Test to Explore the Relationship between Elementary Students' Creative Process and Product - Focusing on Biology - (초등학생의 창의 과정과 산물의 관계를 탐색하기 위한 과학 창의성 검사 도구 개발 - 생명 영역을 중심으로 -)

  • Kim, Minju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.4
    • /
    • pp.520-544
    • /
    • 2021
  • This study aims to develop a scientific creativity test for exploring the relationship between elementary students' creative process and product. For this, the researcher reviewed the literatures of scientific creativity and developed the items based on the constructs of creative process and product. After a review conducted by nine science education specialists, a pilot test, and additional revision and supplementation of observation test, the test, consisting of two sets-"animals" and "plants"-was finally conducted on 105 fifth-grade students. The test results were analyzed by using statistical analysis software. WinSteps, SPSS, and AMOS. The main findings from this study are as follows. First, when it comes to scientific creativity, creative process consists of science knowledge, inquiry skills, and creative thinking skills (divergent, convergent, and associative thinking skills). Creative product in science is a new and scientifically useful idea realized in a certain form. Second, observation, which was selected as a representative inquiry skill in this research, should not be related to creative thinking skills. Third, among the rest of the items, usefulness had the lowest averages, as it was, perhaps, difficult to satisfy the teachers' criteria for the scientific validity and usefulness. Fourth, the Spearman correlation coefficients between the items of "animals" and "plants" to find out the parallel-form reliability were significant, except for the item of originality. Fifth, the test was satisfactory with regard to the three aspects of construct validity-convergent, discriminant, and nomological. This study concludes by discussing the usefulness of this test, which has the possibility of exploring the relationship between creative process and product and of playing a role as an authentic evaluation tool in school.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

Discourse Analysis for Deriving Characteristics of Science-gifted Elementary Students in Inquiry Activities (초등과학영재 특성 도출을 위한 탐구활동에서의 담화분석)

  • Choi, Mi-Hyang;Jhun, Young-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.20 no.1
    • /
    • pp.369-388
    • /
    • 2010
  • A Discourse Analysis tool has been developed and has been applied in the cooperative group inquiry activities in order to derive the characteristics of elementary gifted students in science. We recorded and videotaped the whole group problem-solving processes where 4 elementary students worked together to solve given problems as a group for one year in a gifted education center attached to a university in Seoul. We analyzed recorded discourses using systemic functional linguistics with a focus on the structure of information and topic. The discourse analysis tool was developed with the cooperation of science education and gifted education experts. In discourse analysis, we focused on meaning development processes rather than grammatical analysis. Through application of newly developed discourse analysis tool, we confirmed that the tool is useful in understanding the characteristics of science-gifted elementary students. We also founded that the interaction between students has significant effects on problem-solving processes by comparing two students who showed contradictory features in the share of dialogue. In addition, the result suggested that we need to provide students with proper training for ways to communicate with others for effective science-gifted instruction.

Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching (과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식)

  • Kang, Nam-Hwa
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.143-154
    • /
    • 2017
  • Science inquiry has long been emphasized in Korean science education. Scientific modeling is one of key practices in science inquiry with a potential to provide students with opportunities to develop their own explanations and knowledge thereafter. The purpose of this study is to investigate teacher's understanding of models in science and science teaching. A professional development program on Models (PDM) was developed and refined through three times of implementation while teachers' conceptions of models and modeling were examined. A total of 29 elementary and secondary teachers participated in this study. A survey based on model use of scientists in the history of science was developed and used to collect data and audio recordings of discussions among teachers and artifacts produced by the teachers during PDM were also collected. Three ways of ontological and two ways of epistemological understanding of models and modeling were found in teachers' ideas. After PDM, a quarter of the teachers changed their ontological understanding whereas very few changed their epistemological understanding. In contrast, more than two thirds of the teachers deepened and extended their ideas about using models and modeling in teaching. There were no clear relationships between teachers' understanding of models and ways and ideas about using models in science teaching. However, teachers' perceptions of school conditions were found to mediate their intention to use models in science teaching. The findings indicate possible approaches to professional development program content design and further research.

Analysis on Continuity between the 2015 Revised Elementary Intelligent Life Curric ulum and Sc ienc e Curric ulum for Grades 3-4 (2015 개정 초등학교 슬기로운 생활과 3~4학년 과학과 교육과정의 연계성 분석)

  • Park, Jisun;Chang, Jina;Jin, Ye Eun
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.267-282
    • /
    • 2022
  • This study aims to analyze the continuity and sequence between the intelligent life curriculum for grades 1-2 and the science curriculum for grades 3-4 with a focus on knowledge and inquiry process skills. The results demonstrate that contents related to science in the intelligent life curriculum consisted of only 10 out of 32 elements. Five elements were related to the science curriculum for grades 3-4 and limited to the 'life sciences' area. Particularly, the intelligent life curriculum did not address topics related to 'matter' and 'motion and energy'. Developmental connection was established in the 'life sciences' area and dramatic changes were noted for the topics related to 'earth and space' area. In terms of inquiry process skills, the levels of observation, measurement, inference, and communication naturally increased, whereas a developmental connection was noted between the intelligent life and science curricula. Classification can be viewed as a developmental link; however, viewing the classification as scientific from the epistemic perspectives was insufficient. In the case of expectation, a gap was observed in both curricula due to the absence of expectation activities in the intelligent life curricula. The study discussed the implications for securing the connection between the intelligent life and science curricula on the basis of these results.

Critical Review of 'Skills' in the 2015 Revised Science National Curriculum (2015 개정 과학과 교육과정의 '기능'에 대한 비판적 검토)

  • Kwon, Munho;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2020
  • The 'core concepts', 'generalized knowledge', and 'skills' are newly introduced in the 'contents system' of the 2015 revised national curriculum, and the 'skills' are not clearly defined in the science curriculum. There is a problem of uniformly presenting 'skills' in all 'areas' of science subjects. In this study, it was intended that the teachers' clear understanding of the 'skills' and the philosophy of the revised curriculum would be applied to the school classrooms through the critical problem recognition and consideration of 'skills' newly introduced in the 'contents system' of the 2105 revised science curriculum. First, we reviewed 'science and engineering practice' in the NGSS, which was a reference to the introduction to the curriculum, and identified the problems of 'skills' presented in the science curriculum. It also analyzed critically by comparing 'skills' and 'practices' with other subjects and previous curriculum. Based on this critical analysis, we suggested the following. First, introduce 'skills' items that can implement scientific key competencies, and clearly define each item. Second, present 'skills' that are appropriate according to the subject, 'area', 'core concept', and grade(group) and describe in detail how to apply 'skills' and, third, present 'skills' directly in 'achievement standards'.

How Do Students Use Conceptual Understanding in the Design of Sensemaking?: Considering Epistemic Criteria for the Generation of Questions and Design of Investigation Processes (중학생의 센스메이킹 설계에서 개념적 이해는 어떻게 활용되는가? -질문 고안과 조사 과정 설계에서 논의된 인식적 준거를 중심으로-)

  • Heesoo Ha
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • Teachers often encounter challenges in supporting students with question generation and the development of investigation plans in sensemaking activities. A primary challenge stems from the ambiguity surrounding how students apply their conceptual understandings in this process. This study aims to explore how students apply their conceptual understandings to generate questions and design investigation processes in a sensemaking activity. Two types of student group activities were identified and examined for comparison: One focused on designing a process to achieve the goal of sensemaking, and the other focused on following the step-by-step scientific inquiry procedures. The design of investigation process in each group was concretized with epistemic criteria used for evaluating the designs. The students' use of conceptual understandings in discussions around each was then examined. The findings reveal three epistemic criteria employed in generating questions and designing investigation processes. First, the students examined the interestingness of natural phenomena, using their conceptual understandings of the structure and function of entities within natural phenomena to identify a target phenomenon. This process involved verifying their existing knowledge to determine the need for new understanding. The second criterion was the feasibility of investigating specific variables with the given resources. Here, the students relied on their conceptual understandings of the structure and function of entities corresponding to each variable to assess whether each variable could be investigated. The third epistemic criterion involved examining whether the factors of target phenomena expressed in everyday terms could be translated into observable variables capable of explaining the phenomena. Conceptual understandings related to the function of entities were used to translate everyday expressions into observable variables and vice versa. The students' conceptual understanding of a comprehensive mechanism was used to connect the elements of the phenomenon and use the elements as potential factors to explain the target phenomenon. In the case where the students focused on carrying out step-by-step procedures, data collection feasibility was the sole epistemic criterion guiding the design. This study contributes to elucidating how the process of a sensemaking activity can be developed in the science classroom and developing conceptual supports for designing sensemaking activities that align with students' perspectives.