DOI QR코드

DOI QR Code

초등학생의 창의 과정과 산물의 관계를 탐색하기 위한 과학 창의성 검사 도구 개발 - 생명 영역을 중심으로 -

Developing a Scientific Creativity Test to Explore the Relationship between Elementary Students' Creative Process and Product - Focusing on Biology -

  • 투고 : 2021.10.22
  • 심사 : 2021.11.09
  • 발행 : 2021.11.30

초록

이 연구는 초등학생의 창의 과정과 산물의 관계를 탐색하기 위한 과학 창의성 검사 도구를 개발하는데 목적을 두고 있다. 이를 위해 연구자는 과학 창의성 관련 논문을 분석한 후, 창의 과정과 산물의 구성요인에 근거하여 문항을 개발하였다. 그리고 과학 교육 전문가 9명의 검토를 마친 검사 도구를 파일럿 테스트하였다. '동물', '식물'의 두 세트로 이루어진 검사 도구는 수정과 보완을 거쳐 최종적으로 5학년 학생 105명에게 투입되었다. 투입 결과는 WinSteps, SPSS와 AMOS 통계프로그램으로 분석되었다. 이 연구의 주요 결과는 첫째, 과학 영역에서 창의 과정은 과학 지식, 탐구기능, 창의적 사고기능(확산적, 수렴적, 연관적 사고)을 포함한다. 창의 산물은 새로우면서 과학적으로 유용한 아이디어가 어떤 형태로 나타난 것이다. 둘째, 이 연구에서 대표 탐구기능으로 선정된 관찰은 구성 타당도 측면에서 창의적 사고기능과 연관성이 없어야 했다. 셋째, 유용성 항목은 다른 항목 중 가장 낮은 평균치를 기록하였는데, 평가자인 교사의 관점에서 과학적 타당성과 유용성을 만족시키기 어렵기 때문으로 사료된다. 넷째, 동형검사 신뢰도를 알아보기 위한 '동물'과 '식물' 문항 간 스피어만 상관 계수는 독창성 항목을 제외하고 유의하게 나타났다. 다섯째, 검사 도구는 집중타당성, 판별타당성, 법칙타당성 세 가지 측면에서 구성 타당도를 대체로 만족시켰다. 연구 결과를 바탕으로 창의 과정과 산물의 관계를 탐색하고 학교 현장에서 실제적인 평가 도구로 역할을 할 검사 도구의 유용성을 논하였다.

This study aims to develop a scientific creativity test for exploring the relationship between elementary students' creative process and product. For this, the researcher reviewed the literatures of scientific creativity and developed the items based on the constructs of creative process and product. After a review conducted by nine science education specialists, a pilot test, and additional revision and supplementation of observation test, the test, consisting of two sets-"animals" and "plants"-was finally conducted on 105 fifth-grade students. The test results were analyzed by using statistical analysis software. WinSteps, SPSS, and AMOS. The main findings from this study are as follows. First, when it comes to scientific creativity, creative process consists of science knowledge, inquiry skills, and creative thinking skills (divergent, convergent, and associative thinking skills). Creative product in science is a new and scientifically useful idea realized in a certain form. Second, observation, which was selected as a representative inquiry skill in this research, should not be related to creative thinking skills. Third, among the rest of the items, usefulness had the lowest averages, as it was, perhaps, difficult to satisfy the teachers' criteria for the scientific validity and usefulness. Fourth, the Spearman correlation coefficients between the items of "animals" and "plants" to find out the parallel-form reliability were significant, except for the item of originality. Fifth, the test was satisfactory with regard to the three aspects of construct validity-convergent, discriminant, and nomological. This study concludes by discussing the usefulness of this test, which has the possibility of exploring the relationship between creative process and product and of playing a role as an authentic evaluation tool in school.

키워드

참고문헌

  1. 강정하, 최인수(2008). 과학적 창의성과 시각예술적 창의성. 영재교육연구, 18(2), 201-237.
  2. 강충열(2006). 창의성 교육과 초등교육의 근본적 성격. 아동교육, 15(3), 33-52.
  3. 강현철(2013). 구성타당도 평가에 있어서 요인분석의 활용. Journal of Korean Academy of Nursing, 43(5), 587-594. https://doi.org/10.4040/jkan.2013.43.5.587
  4. 강호감, 최선영(2004). 초등 생물교육에서 창의력 신장을 위한 교수.학습 방안: 창의력 구성요소를 중심으로. 생물교육, 32(4), 287-297.
  5. 교육부(2015). 과학과 교육과정. 교육부 고시 제 2015-74호, [별책9].
  6. 권용주, 정진수, 강민정, 김영신(2003). 과학적 가설 지식의 생성 과정에 대한 바탕이론. 한국과학교육학회지, 23(5), 458-469.
  7. 김명숙, 정대련, 이종희(2002). 과학영재의 창의성, 환경, 그리고 학업적 자기효능감에 관한 연구. 아동학회지, 23(3), 91-108.
  8. 김명숙, 정대련, 이종희(2003). 과학영재와 일반아의 창의적 사고, 인성, 환경과 과학영역의 창의적 수행에서의 성차. 아동학회지, 24(3), 1-13.
  9. 김민주, 임채성(2018). 초등과학영재학생의 과학창의성에 대한 자기 평가, 교사 평가, 객관적 평가의 비교 분석. 초등과학교육, 37(4), 440-454.
  10. 김민주, 임채성(2019). 초등과학영재학생의 발표에 대한 인식 및 발표의 자발성과 과학창의성의 관계 분석. 초등과학교육, 38(3), 331-344.
  11. 김민주, 김현주, 임채성(2020). 식물원 야외체험학습에서 활용 가능한 과학 창의성 과제 개발: 초등과학영재학생에의 적용. 초등과학교육, 39(4), 506-521.
  12. 김현주, 김민주, 임채성(2020). 초등과학영재학생의 과학지식과 과학창의성의 관계: 생명 영역을 중심으로. 초등과학교육, 39(3), 382-398.
  13. 박명희, 박윤복, 권용주(2005). 초등학생의 어항 관찰활동에서 나타난 관찰의 유형과 그 변화. 한국초등과학교육학회지, 24(4), 345-350.
  14. 박종원(2004). 과학적 창의성 모델의 제안: 인지적 측면을 중심으로. 한국과학교육학회지, 24(2), 375-386.
  15. 박현주.(2014). 과학적 관찰 활동이 중학생들의 창의성 변화에 미친 영향. 과학교육연구지, 38(2), 443-453.
  16. 변정호, 이준기, 권용주(2009). 과학교육에서 제시하는 과학적 관찰의 의미와 과정에 대한 분석. 한국과학교육학회지, 29(5), 531-540.
  17. 성진숙(2002). 과학에서의 창의적 문제해결력에 영향을 미치는 제 변수 분석. 이화여자대학교 대학원 박사학위논문.
  18. 성태제(2002). 타당도와 신뢰도. 서울: 학지사.
  19. 손정우(2009). 과학글쓰기를 통한 과학영재학생들의 과학적 사고력과 창의적 문제해결력 연구. 과학영재교육, 1(3), 21-32.
  20. 송성수(2013). 과학사의 사례를 활용한 과학자의 창의성에 관한 탐색적 연구: 다윈, 에디슨, 아인슈타인을 중심으로. 교사교육연구, 52(2), 227-236.
  21. 신동훈, 신정주, 권용주(2006). 생명현상에 관한 초등학교 관찰수업 과정과 관찰 유형 분석. 한국초등과학교육학회지, 25(4), 339-351.
  22. 신지은, 한기순, 정현철, 박병건, 최승언(2002). 과학 영재 학생과 일반 학생은 창의성에서 어떻게 다른가?: 서울대학교 과학영재교육센터 학생들을 중심으로. 한국과학교육학회지, 22(1), 158-175.
  23. 유용현, 강유진, 김지나(2013). 고등학생의 과학영역 창의성과 일반창의성, 메타인지, 과학 정의적 특성과의 관계. 교과교육학연구, 17(1), 109-128. https://doi.org/10.24231/RICI.2013.17.1.109
  24. 윤회정, 박은미, 김지영, 이윤하, 방담이(2015). 중학생들의 과학적 창의성 관련 변인 간 관계 분석 연구. 교과교육학연구, 19(4), 1005-1025. https://doi.org/10.24231/RICI.2015.19.4.1005
  25. 임성만, 양일호, 임재근(2009). 영역 특수적인 입장에서의 과학적 창의성에 대한 정의, 구성요인에 대한 탐색. 과학교육연구지, 33(1), 31-43.
  26. 임채성(2009). 뇌기반 진화적 과학 교수학습 모형의 개발. 한국과학교육학회지, 29(8), 990-1010.
  27. 임채성(2012). 뇌기반진화적 접근법에 따른 창의적 과학문제해결 지도 모형 개발. 생물교육, 40(4), 429-452.
  28. 임채성(2014). 과학창의성 평가 공식의 개발과 적용. 초등과학교육, 33(2), 242-257.
  29. 임채성, 김재영, 정다운(2013). 초등과학 생명 영역 수업에서 학생의 흥미 변화에 영향을 미치는 요인: '꽃'주제를 중심으로. 생물교육, 41(4), 638-656. https://doi.org/10.15717/BIOEDU.2013.41.4.638
  30. 정현철, 한기순, 김병노, 최승언(2002). 과학 창의성 계발을 위한 프로그램 개발-이론과 예시를 중심으로. 한국지구과학회지, 23(4), 334-348.
  31. 조연순, 최경희(2000). 창의적 문제 해결력 신장을 위한 중학교 과학 교육과정 개발. 한국과학교육학회지, 20(2), 329-343.
  32. 최인수(2000). 유아용 창의성 측정도구에 관한 고찰. 유아교육연구, 20(2), 139-166.
  33. 최일호, 최인수(2001). 새로운 생각은 어떻게 가능한가: 전문분야 창의성에 대한 학습과정 모형 접근. 한국심리학회지: 일반, 20(2), 409-428.
  34. 한기순, 배미란(2004). 과학영재와 일반 학생들 간의 사고 양식과 지능 및 창의성간의 관계 비교. 교육심리연구, 18(2), 49-68.
  35. 한기순(2000). 창의성의 영역 한정성과 영역 보편성에 관한 분석과 탐구. 영재교육연구, 10(2), 47-69.
  36. 홍세희(2000). 구조 방정식 모형의 적합도 지수 선정기준과 그 근거. Korean Journal of Clinical Psychology, 19(1), 161-177.
  37. Adolf, J. (1982). Creative thinking through science. (ERIC Document Reproduction Service No. ED 232 785). Retrieved September 1, 2008, from http://eric.ed.gov
  38. Alin, A. (2010). Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 370-374. https://doi.org/10.1002/wics.84
  39. Anderson, J. R. (2005). Cognitive psychology and its implications. New York: Macmillan.
  40. Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11(2), 173-177. https://doi.org/10.1207/s15326934crj1102_7
  41. Baer, J. (2011). How divergent thinking tests mislead us: Are the Torrance Tests still relevant in the 21st century? The Division 10 debate. Psychology of Aesthetics, Creativity, and the Arts, 5(4), 309-313. https://doi.org/10.1037/a0025210
  42. Bagozzi, R. P., & Yi, Y. (1998). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  43. Basadur, M. (1995). Optimal ideation-evaluation ratios. Creativity Research Journal, 8, 63-75. https://doi.org/10.1207/s15326934crj0801_5
  44. Beghetto, R. A. (2010). Creativity in the classroom. In J. C. Kaufman & R. J. Sternberg (Eds.). Cambridge Handbook of Creativity (pp. 447-465). New York: Cambridge University Press.
  45. Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for "mini-c" creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73. https://doi.org/10.1037/1931-3896.1.2.73
  46. Brown, T. A. (2006). Confirmatory factor analysis. New York: Guilford Press.
  47. Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361-379). New York, NY: Guilford Press.
  48. Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380-400. https://doi.org/10.1037/h0040373
  49. Cropley, A. J. (1999). Creativity and cognition: Producing effective novelty. Roeper review, 21(4), 253-260. https://doi.org/10.1080/02783199909553972
  50. Csikszentmihalyi, M. (1990). The domains of creativity. In M. A. Runco & R. S. Albert (Eds.), Theories of creativity, London: Sage.
  51. Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290-309. https://doi.org/10.1207/s15327957pspr0204_5
  52. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
  53. Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403. https://doi.org/10.1080/09500690110098912
  54. Kind, P., & Kind, V. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43, 1-37. https://doi.org/10.1080/03057260708560225
  55. Liang, J. C. (2002). Exploring scientific creativity of eleventh grade students in Taiwan. Doctoral dissertation, Texas state University.
  56. Lipps, J. H. (1999). This is Science!. The Paleontological Society Special Publications, 9, 3-16. https://doi.org/10.1017/s2475262200013988
  57. Lubart, T. I. (1999). 17 Creativity across cultures. Handbook of creativity (pp. 339-350). UK: Cambridge University Press.
  58. Luger, G. F., Johnson, P., Stern, C., Newman, J. E., & Yeo, R. (1994). Cognitive science: The science of intelligent systems. San Diego: Academic Press.
  59. Meador, K. S. (2003). Thinking creatively about science: Suggestions for primary teachers. Gifted Child Today, 26(1), 25-29. https://doi.org/10.4219/gct-2003-93
  60. Mohamed, A. (2006). Investigating the scientific creativity of fifth-grade students. Doctoral dissertation, Arizona state University.
  61. Mumford, M. D. (2003). Where have we been, where are we going? Taking stock in creativity research. Creativity Research Journal, 15(2-3), 107-120. https://doi.org/10.1207/S15326934CRJ152&3_01
  62. Newton, D. P. (2010). Assessing the creativity of scientific explanations in elementary science: an insider-outsider view of intuitive assessment in the hypothesis space. Research in Science & Technological Education, 28(3), 187-201. https://doi.org/10.1080/02635143.2010.501752
  63. Newton, L., & Newton, D. (2010). Creative thinking and teaching for creativity in elementary school science. Gifted and Talented International, 25(2), 111-124. https://doi.org/10.1080/15332276.2010.11673575
  64. NGSS Lead States. (2013). Next generation science standards: For states, by states: National Academies Press Washington, DC.
  65. Rhodes, M. (1961). An analysis of creativity. The Phi delta kappan, 42(7), 305-310.
  66. Runco, M. A. (2003). Education for creative potential. Scandinavian Journal of Educational Research, 47(3), 317-324. https://doi.org/10.1080/00313830308598
  67. Runco, M. A. (2007). Theories and themes: Research, development, and practice. San Diego: Elsevier Academic Press.
  68. Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66-75. https://doi.org/10.1080/10400419.2012.652929
  69. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity research journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092
  70. Sak, U., & Ayas, M. B. (2013). Creative Scientific Ability Test (C-SAT): A new measure of scientific creativity. Psychological Test and Assessment Modeling, 55(3), 316.
  71. Simonton, D. K. (1999). Origins of genius: Darwinian perspectives on creativity. Oxford: Oxford University Press.
  72. Simonton, D. K. (2004). Exceptional creativity and chance: Creative thought as a stochastic combinatorial process. Beyond knowledge: Extracognitive aspects of developing high ability (pp. 39-72). UK: Routledge.
  73. Simonton, D. K. (2007). Creativity: Specialized expertise or general cognitive processes? In M. J. Roberts (Ed.), Integrating the mind: Domain general versus domain specific processes in higher cognition (pp. 351-367). Hove, England: Psychology Press.
  74. Stein, M. I. (1953). Creativity and culture. The journal of psychology, 36(2), 311-322. https://doi.org/10.1080/00223980.1953.9712897
  75. Sternberg, R. J. (Ed.) (1998). Handbook of human creativity. Cambridge, UK: Cambridge University Press.
  76. Sternberg, R. J. (2009). Domain-generality versus domain-specificity of creativity. In Milieus of Creativity (pp. 25-38). Dordrecht: Springer.
  77. Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.
  78. Sun, J. (2005). Assessing goodness of fit in confirmatory factor analysis. Measurement and evaluation in counseling and development, 37(4), 240-256. https://doi.org/10.1080/07481756.2005.11909764
  79. Tamassia, C., & Schleicher, A. (2002). Sample Tasks from the PISA 2000 Assessment: Reading, Mathematical and Scientific Literacy. http://www.oecd.org/education/school/programmeforinternationalstudentassessmentpisa/33692744.pdf
  80. Torrance, E. P. (1998). The Torrance tes ts of creative thinking norms-technical manual figural (streamlined) forms A & B. Bensenville, IL: Scholastic Testing Service, Inc.
  81. Yang, K. K., Lin, S. F., Hong, Z. R., & Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students' scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16-23. https://doi.org/10.1080/10400419.2016.1125270
  82. Yu, J. P. (2012). The concept and understanding of structural equation modeling by the professor Yujongpil. Seoul: Hannarae Publishing Co.