• Title/Summary/Keyword: 과학 개념 학습

Search Result 885, Processing Time 0.025 seconds

The Effect of Cooperative Learning Environments in Conceptual Change Instruction on Students' Cognitive and Affective Outcomes (개념 변화 수업에서 협동학습 환경이 학생들의 인지적, 정의적 결과에 미치는 효과)

  • Han, Jae-Young;Jeong, Eun-Hee;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.5
    • /
    • pp.555-562
    • /
    • 2005
  • This study investigated the effects of cooperative learning environments in conceptual change instruction upon students' conception, achievement, learning motivation, attitude toward science instruction, and perception of involvement. Two classes of 8th graders at a co-ed middle school were assigned to the treatment and the comparison groups. They were taught about density, boiling point, freezing point, and solubility for 11 class hours. The treatment group's learning environment involved cooperative conceptual change instructions while the comparison group's environment incorporated individual conceptual change instructions. Mann-Whitney test results revealed that the scores of the conception and achievement test for the treatment group were significantly higher than those for the comparison group. The perceptions of involvement for the treatment group were more positive than those for the comparison group. The scores of the learning motivation test for the treatment group were found to be significantly higher than those for the comparison group based on a two-way ANCOVA analysis. However, attitudes toward science instruction were not found to be significantly different between the two groups.

Inductive Influence of Algorithmic and Conceptual Problems (수리 문제와 개념 문제 사이의 유도 효과)

  • Noh, Tae-Hee;Kang, Hun-Sik;Jeon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.320-326
    • /
    • 2004
  • This study investigated whether algorithmic problem solving and conceptual problem solving influenced each other or not. Four classes of 12th grade (N= 112) that are equal in prior achievement were randomly assigned to group AC (Algorithmic-Conceptual problem) and group CA (Conceptual-Algorithmic problem). Students of group AC solved the conceptual problems after learning the related algorithmic problems, and those of group CA solved the same problems in reverse order. The results revealed that learning the algorithmic problems improved students' ability to solve the related conceptual problems, but learning the conceptual problems did not help students solve the related algorithmic problems. Regarding the confidence on problem solving, learning the algorithmic problems had little effect on the related conceptual problems. Learning the conceptual problems also had little effect on students' confidence on solving of the related algorithmic problems.

The Theoretical Review of the Feature and Application of Science Teaching Models (과학 교수 모형의 특징과 적용에 대한 이론적 고찰)

  • Cho, Hee-Hyung;Kim, Hee-Kyung;Yoon, Hee-Sook;Lee, Ki-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.557-575
    • /
    • 2010
  • The purpose of the study was to suggest the characteristics and goals of the science teaching model for use as criteria in selecting the appropriate teaching model for science in secondary schools. These characteristics and the goals have been organized based on the analyses of the literature on the teaching and/or instructional model. The teaching models have been classified into four areas, and the characteristics and goals of each area have been summarized as follows: $\cdot$ Traditional models: teaching of scientific knowledge through lectures, acquisition of scientific knowledge through discovery, acquisition of inquiry process skills through inquiry-based teaching/learning $\cdot$ Transitional models: demonstration and discovery as teaching strategies, acquisition of inquiry process skills through inquiry approach, acquisition and change of scientific knowledge $\cdot$ Modernistic model - conceptual change models: differentiation of scientific knowledge, exchange of misconceptions for scientific concepts - learning cycle models: conceptual differentiation, exchange of misconceptions, acquisition of science process skills Also described in this paper are the model's characteristics and goals that can be used as the criteria for selecting the appropriate teaching model for the subject that will be taught.

Relationships between Learning Modes and Knowledge Structures of Primary School Children: Reflected on the Concept Maps of the 'Structure and Function of Plant' Unit ('식물의 구조와 기능'에 대한 초등학교 아동들의 지식구조와 학습성향과의 관계)

  • Kim, Jong-Jung;song, Nam-Hi
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.796-805
    • /
    • 2002
  • This study examined the knowledge structure constructed by children before formal instruction, and successive changes in the structural complexity of knowledge during and after the learning of 'Structure and Function of Plant' unit. It also investigated how those changes were affected by children's learning modes. The researchers made the 5th graders draw the first draft of their concept map to see the pre-existing knowledge structure concerned with the unit and four more concept maps after completing every fourth lesson. And to see how long their knowledge structures were preserved, the researchers made children draw additional concept maps in 3 days, 3 months, and 7 months after completing the unit. Children drew their current concept maps on the basis of the previous one while learning the unit and without the previous one after completing the unit. Each concept map drawn by children showed the degree of their current understanding on the structures and functions of plants. The results revealed that only two levels of hierarchy and five relationships among the components of the first concept map(relationship, hierarchy, cross link and example) were proven to be valid in terms of conceptual relevance. Growth in the structural complexity of knowledge took place progressively throughout the unit and the effects of learning mode on the growth were favorably reflected in concept map scores of meaningful learners over time(relationship, cross link, example: p<.01, hierarchy: p<.05). Although there were some differences on the concept map scores between two types of learners, they commonly showed that knowledge restructuring had occurred apparently in the early periods from the 1st to the 6th lesson and had not occurred at all in the last period of the unit. The frequency of tuning was higher in rote learners than in meaningful learners throughout the unit, but the frequency of accretion was reverse. Concept map scores of rote learners constructed in the course of learning of the unit decreased little by little gradually in all the categories after completing the unit. However, the average total map score of meaningful learners increased a little more in 7 months than in 3 months after completing the unit. Therefore it can be inferred that meaningful learners construct more stable and well-differentiated knowledge structures than the rote learners.

The Effect of an Instruction Using Generating Analogy on Students’ Conceptual Understanding in Middle School Science Concept Learning (중학교 과학 개념 학습에서 비유 만들기를 이용한 수업이 학생들의 개념 이해에 미치는 효과)

  • No, Tae-Hui;Kim, Gyeong-Sun;Choe, Eun-Gyu;Cha, Jeong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.338-345
    • /
    • 2006
  • study investigated the effect of an instruction using generating analogy on scientific conceptual understanding, science learning motivation, attitude toward science instruction, and perception of instruction. Two classes of seventh graders at a middle school in Seoul were randomly assigned to the treatment group and the control group, and they were taught about the motion of molecules for 5 class hours. The instruction for treatment group was developed based on the Glynns Teaching-With-Analogy model. Two-way ANCOVA results revealed that the scores of the treatment group were significantly higher than those of the control group in the conception test. However, there was no significant difference between two groups in the science learning motivation test and the test on the attitude toward science instruction. Survey results on the students perception of instruction showed that generating analogy was hard for the greater part of students, and finding appropriate analog was the most difficult work. Educational implications are discussed.

The Effects of Assigning Cognitive Roles in Small-Group Discussion for Science Concept Learning (과학 개념 학습을 위한 소집단 토론에서 인지적 역할 부여의 효과)

  • Noh, Tae-Hee;Kang, Suk-Jin;Han, Su-Jin;Han, Jae-Young;Jeon, Kyung-Moon;Seung, Eul-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This study investigated the effects of assigning cognitive roles, a method that may promote verbal interaction in knowledge-building processes, in small-group discussion for science concept learning. Two classes (62 students) of 7th-graders respectively received a concept learning instruction through small-group discussion with assigned cognitive roles (CR) asking to explain and contradict one's idea and to synthesize and conciliate group's idea, and a concept learning instruction through small-group discussion with no specific assigned roles (NSR), for 9 class periods. After the instructions, the tests of achievement, conceptions, the perceptions on science learning environments, and the perceptions toward small-group discussion were administered. ANCOVA results revealed that low-achievers in the NSR group performed significantly better than those in the CR group. Similar tendency was also found in the scores of the conceptions test. Two groups did not differ significantly in the perceptions on science learning environments and toward small-group discussion.

Effect of Concept Learning Strategy Emphasizing Social Consensus during Discussion (토론 과정에서 사회적 합의 형성을 강조한 개념 학습 전략의 효과)

  • Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.250-261
    • /
    • 2000
  • In this study, a concept learning strategy emphasizing social consensus during discussion (SCS) was developed. The instructional effects of this strategy were compared with those of cognitive conflict strategy (CCS) and traditional instruction in the aspects of students' achievement, conceptions, communication apprehension, perceptions of science learning environment, and perceptions of small group discussion. There were no significant differences in the scores of an achievement test. For the students of low communication competency, however, the scores of the CCS group were significantly higher than those of the traditional group. The adjusted mean of the SCS group was higher than those of the other groups in a conceptions test. The social consensus strategy was also found to be more effective in learning concept for those who were more competent in communicating. No significant differences were found in the communication apprehension. The scores of three groups did not differ significantly in the subcategories of 'personal relevance' and 'students' negotiation' of the test of the perceptions of science learning environment. However, the students in the SCS group scored higher in 'participation'. The students in the SCS group perceived small group discussions more positively.

  • PDF

A Comparative Study on the Effects of Learning Sequences of Chemical Change Concepts (교수 학습 순서에 따른 화학 변화에 관련 개념 획득 정도의 비교 연구)

  • Lee, Hye Rann;Ryu, Oh Hyun;Lim, Kwang Su;Paik, Seoung Hey;Park, Kuk Tae
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.475-484
    • /
    • 1999
  • This study was to investigate the effective order of instruction for students learning the concepts of chemical change. Chemical change was considered as the important area in 8th grade chemistry part. The study consisted of 168 8th grade students, two classes of boys and girls each, from a middle school in Seoul. They were divided into two groups, the experimental group and the control group. The control group was taught in the order, which was presented in the science textbook; chemical change, atom, and molecule (CAM). For the experimental group, the order was molecule, atom, and chemical change (MAC). From the results of the study, there was a statistically significant difference between the control group and the experimental group. But the interviews indicated that the students were confused with the MAC method in spite of the effective learning. Therefore, for more effective concepts learning without a confusion, we need to provide our students with various learning sequences of science textbooks rather than fixed learning sequences.

  • PDF

An analysis of effect for grouping methods corresponding to ecological niche overlap of 7th graders' photosynthesis concepts (7학년 광합성 개념의 지위 중복 변화에 따른 소집단 구성의 효과 분석)

  • Jang, Hye-ji;Kim, Youngshin
    • Journal of Science Education
    • /
    • v.41 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • Small group learning is an educational approach to allow students to solve the problems and to achieve a common goal. Especially, small group learning in science education is one of the most important educational approaches and effective to ensure understanding of a topic. Small group learning consisting of three students in science education maximize student understanding and learning efficiency. However, It is reported that the effects of small group learning on achievement show different results, corresponding to different grouping methods(homogeneous/heterogeneous). This study investigated the effects of grouping method on difference of ecological niche of photosynthesis concepts. To achieve this, 1107 7th students were composed of homogeneous and heterogeneous groups classified into top, middle, and bottom levels. The photosynthesis units were divided into four categories: the photosynthesizing place, the substances of photosynthesis, required materials for the photosynthesizing, and environmental factors affecting photosynthesis. A questionnaire was composed by selecting concepts having a frequency of 4% or more based on prior studies on the change of the ecological status of photosynthesis. The questionnaire was scored in terms of relativity and understanding on each of the proposed concepts in the four categories. The result of this study is as set forth below. 1) There was an enhancement of learning the concept of science in small group classes consisting of 3 students. 2) To enhance the average upon composing of a group, it is proposed that the group should be formed homogeneously, and to reduce the deviation between the members, it is proposed that the group should be formed heterogeneously. Through this study, it is expected that specific studies verifying the difference or effect on the duplicity of results are conducted based on the composition of groups.

Implications of Using Physical and Virtual Tools in Learning Science Concepts from a Literature Review (문헌고찰을 통한 물리적 도구와 가상도구의 사용이 과학 개념학습에 미치는 시사점)

  • Seokmin Kang;Sungyeun Kim
    • Journal of Science Education
    • /
    • v.47 no.2
    • /
    • pp.154-166
    • /
    • 2023
  • It has been known that the tool characteristics embedded in physical tools and virtual tools act with different underlying mechanisms in a user's knowledge acquisition and conceptual understanding. This overview study examines the learning process through the use of physical and virtual tools from the perspective of conceptual frameworks, affordability that tools present, and the depth of cognitive engagement that occurs in the process of learning concepts through various learning activities. Based on the conceptual frameworks, the results of previous comparative studies were reinterpreted. It was found that what mattered for learning is the amount of new information that a tool provides and the different level of cognitive engagement that students use through various learning activities. Finally, the implications to be considered when teachers use physical and virtual tools to help students better understand various concepts are discussed.