DOI QR코드

DOI QR Code

Implications of Using Physical and Virtual Tools in Learning Science Concepts from a Literature Review

문헌고찰을 통한 물리적 도구와 가상도구의 사용이 과학 개념학습에 미치는 시사점

  • Received : 2023.06.20
  • Accepted : 2023.08.28
  • Published : 2023.08.31

Abstract

It has been known that the tool characteristics embedded in physical tools and virtual tools act with different underlying mechanisms in a user's knowledge acquisition and conceptual understanding. This overview study examines the learning process through the use of physical and virtual tools from the perspective of conceptual frameworks, affordability that tools present, and the depth of cognitive engagement that occurs in the process of learning concepts through various learning activities. Based on the conceptual frameworks, the results of previous comparative studies were reinterpreted. It was found that what mattered for learning is the amount of new information that a tool provides and the different level of cognitive engagement that students use through various learning activities. Finally, the implications to be considered when teachers use physical and virtual tools to help students better understand various concepts are discussed.

물리적 도구와 가상도구가 가진 서로 다른 도구적 특성은 사용자의 지식획득과 개념 이해에 있어 각기 다른 기제로 작용하여 학습에 영향을 미친다고 알려져 왔다. 본 개관연구는 문헌고찰을 통해 물리적 도구와 가상도구의 사용을 통한 학습과정을 도구가 부여하는 행동유도성의 관점과 인지적 개입의 깊이에 따른 관점에서 정리하였다. 또한 이를 바탕으로 기존에 수행된 물리적 도구와 가상도구의 사용을 통한 학습수행 정도를 비교한 연구의 결과들을 재해석하였다. 비록 물리적 도구와 가상도구의 사용에 있어 각기 다른 행동유도성이 관여되긴 하지만 실제 학습에 영향을 미치는 요인은 가상도구를 사용하느냐 혹은 물리적 도구를 사용하느냐가 아니라, 도구가 제공하는 새롭고 부가적인 정보의 양과 학습자가 도구를 이용한 다양한 학습활동을 통해 개념을 이해하는 과정에서 발생하는 인지적 개입의 깊이에 달려 있음을 확인하였다. 본 연구는 교사들이 물리적 및 가상도구를 사용하여 학생들의 개념 이해를 돕기 위한 학습 시 행동유도성과 인지적 개입의 관점에서 수업 계획을 세울 때 고려해야 할 시사점을 제시하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A2C1010310).

References

  1. Akpan, I. J., & Shanker, M. (2019). A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: An exploratory meta-analysis. Simulation, 95(2), 145-170.
  2. Anderson, J. R. (2020). Cognitive Psychology and Its Implications. Broadway, England: Worth Publishers.
  3. Bara, F., Gentaz, E., Cole, P., & Sprenger-Charolles, L. (2004). The visuo-haptic and haptic exploration of letters increases the kindergarten- children's understanding of the alphabetic principle. Cognitive Development, 19(3), 433-449.
  4. Baxter, G. P. (1995). Using computer simulations to assess hands-on science learning. Journal of Science Education and Technology, 4, 21-27.
  5. Borghi, A. M. (2004). Object concepts and action: Extracting affordances from objects parts. Acta Psychologica, 115(1), 69-96. https://doi.org/10.1016/j.actpsy.2003.11.004
  6. Borghi, A. M., & Riggio, L. (2009). Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Research, 1253, 117-128.
  7. Braun, M. W., & Kearns, K. D. (2008). Improved learning efficiency and increased student collaboration through use of virtual microscopy in the teaching of human pathology. Anatomical Sciences Education, 1(6), 240-246.
  8. Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers & Education, 87, 218-237.
  9. Bub, D. N., Masson, E. J., and Cree, G. S. (2008). Evocation of functional and volumetric gestural knowledge by objects and words. Cognition, 106, 27-58. https://doi.org/10.1016/j.cognition.2006.12.010
  10. Buxbaum, L. J. (2001). Ideomotor aApraxia: A call to action. Neurocase, 7, 445-448. https://doi.org/10.1093/neucas/7.6.445
  11. Chen, S., Chang, W-H., Lai, C-H., & Tsai, C-Y. (2014). A comparison of students' approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer based laboratories. Science Education, 98(5), 905-935.
  12. Chi, M. T. H., Kang, S., & Yaghmourian, D. (2017). Why students learn more from dialogue than monologue videos: Analyses of peer interactions. Journal of the Learning Sciences, 26, 10-50.
  13. Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49, 219-243.
  14. Choi, O., & Year, S. (2004). A study on the effects of the virtual lab and the real experimental activity in the lesson of 'Digestion' of the 7th grade students. Journal of Research in Curriculum Instruction, 8(3), 437-451.
  15. Clark, R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42, 21-29. https://doi.org/10.1007/BF02299088
  16. Collier, L., Dunham, S., Braun, M. W., & O'Loughlin, V. D. (2012). Optical versus virtual: teaching assistant perceptions of the use of virtual microscopy in an undergraduate human anatomy course. Anatomical Sciences Education, 5, 10-19.
  17. Corter, J. E., Esche, S. K., Chassapis, C., Ma, J., & Nickerson, J. V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57, 2054-2067.
  18. Darrah, M., Humbert, R., Finstein, J., Simon, M., & Hopkins, J. (2014). Are virtual labs as effective as hands-on labs for undergraduate physics?. A comparative study at two major universities. Journal of Science Education and Technology, 23, 803-814.
  19. Ekwueme, C. O., Ekon, E. E., & Ezenwa-Nebife, D. C. (2015). The impact of hands-on-approach on student academic performance in basic science and mathematics. Higher Education Studies, 5(6), 47-51.
  20. Finkelstein, N., Adams, W., Keller, C., Kohl, P., Perkins, K., Podolefsky, N., Reid., S., & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics-Physics Education Research, 1(1), 010103.
  21. Flowers, L. O. (2011). Investigating the effectiveness of virtual laboratories in an undergraduate biology course. The Journal of Human Resource and Adult Learning, 7, 110-116.
  22. Garner, L. C., & Gallo, M. A. (2005). Field trips and their effect on student achievement and attitudes: A comparison of physical versus virtual field trips to the Indian River Lagoon. Journal of College Science Teaching, 34, 14-17.
  23. Gibson, J. J. (1977). The theory of affordance. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing: Toward an ecological psychology (pp. 67-82). Hillsdale, NJ: Erlbaum.
  24. Glenberg, A. M., Goldberg, A. B., & Zhu, X. (2011). Improving early reading comprehension using embodied CAI. Instructional Science, 39, 27-39.
  25. Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57, 2281-2290.
  26. Hawkins, I., & Phelps, A. J. (2013). Virtual laboratory vs. traditional laboratory: which is more effective for teaching electrochemistry? Chemistry Education Research and Practice, 14, 516-523.
  27. Hmelo-Silver, C. E., Jordan, R., Liu, L., Gray, S., Demeter, M., Rugaber, S. V., & Goel, A. (2008). Focusing on function: Thinking below the surface of complex natural systems. Science Scope, 31, 27-35.
  28. Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students' understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271-283.
  29. Jackson, S., Stratford, S., Krajcik, J., & Soloway, E. (1996). Making system dynamics modeling accessible to pre-college science students. Interactive Learning Environments. 4, 233-257.
  30. Jones, M. G., Minogue, J., Tretter, T. R., Negishi, A., & Taylor, R. (2005). Haptic augmentation of science instruction: Does touch matter? Science Education, 90(1), 111-123.
  31. Kang, M., Kim, H., & Lee, J. (2011). The effects of flow and cognitive presence on learning outcomes in a middle school science class using web-based simulation. Journal of Korean Association for Educational Information and Media, 17(1), 39-61.
  32. Kang, S., Lu, M., & Park, H. S. (2022). Not affordance, but engagement: Benefits from using a learning tool. World Education Research Association Focal Meeting & American Educational Research Association Annual Conference, San Diego, CA, USA
  33. Kim, H., & Kim, S. (2021). Development of simulation-based scientific inquiry program and exploration of implementation possibility. School Science Journal, 15(5), 423-436.
  34. Kim, H. (2021). Perception of science instruction in Korean science classes - Foucused on PISA 2015 survey. School Science Journal, 15(1), 26-36.
  35. Klahr, D., Triona, L. M., & Williams, C. (2006). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Science Teaching, 44, 183-203.
  36. Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional complexity and the science to constrain it. Science, 342, 935-937.
  37. Lalley, J. P., Piotrowski, P. S., Battaglia, B., Brophy, K., & Chugh, K. (2010). A comparison of V-Frog© to physical frog dissection. International Journal of Environmental and Science Education, 5(2), 189-200.
  38. Lang, J. (2012) Comparative study of hands-on and remote physics labs for first year university level physics students. Transformative Dialogue: Teaching and Learning Journal, 6, 1-15.
  39. Lee, S. A., Jhun, Y. S., Hong, J. E., Shin, Y. J., Choi, J. H., & Lee, I. H. (2007). Difficulties experienced by elementary school teachers in science classes. Journal of Korean Elementary Science Education, 26(1), 97-107.
  40. Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Survey, 38, 1-24.
  41. Marshall, P., Cheng, P., & Luckin, R. (2010). Tangibles in the balance: a discovery learning task with physical or graphical materials. TEI '10 Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, 153-160.
  42. Moyer-Packenham, P., Baker, J., Westenskow, A., Anderson, K., Shumway, J., Rodzon, K., & Jordan, K. (2013). A study comparing virtual manipulatives with other instructional treatments in third-and fourth-grade classrooms. The Journal of Education, 193, 25-39.
  43. Myneni, L. S., Narayanan, N. H., Rebello, S., Rouinfar, A., & Puntambekar, S. (2013). An interactive and intelligent learning system for physics education. IEEE Transactions on Learning Technologies, 6, 228-239.
  44. National Research Council. (2006). America's lab report: Investigations in high school science. Washington, DC: National Academies Press.
  45. National Science Teachers Association (2013). National NSTA Conference. Retrieved from http://static.nsta.org/pdfs/2013SanAntonioProgram1.pdf
  46. Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: an effort to improve students' conceptual understanding through science laboratory experimentation. Science Education, 96, 21-47.
  47. Osiurak F., & Badets, A. (2016). Tool use and affordance: Manipulation-based versus reasoning-based approaches. Psychological Review, 123, 534-568.
  48. Park, E. W., & Lee, Y. H. (2016). The analysis of inquiry Activities in High School Science Textbooks for the 2009 revised curriculum. The Journal of Learner-Centered Curriculum and Instruction, 16(8), 419-438.
  49. Pellicano, A., Thill, S., Ziemke, T., & Binkofski, F. (2011). Affordances, adaptive tool use and grounded cognition. Frontiers in Psychology, 2, 53.
  50. Pouw, W., van Gog, T., & Pass, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Educational Psychology Review, 26(1), 1-22.
  51. Predavec, M. (2001). Evaluation of E-Rat, a computer-based rat dissection, in terms of student learning outcomes. Journal of Biological Education, 35, 75-80. https://doi.org/10.1080/00219266.2000.9655746
  52. Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21, 133-147.
  53. Ronen, M., & Eliahu, M. (2000). Simulation - a bridge between theory and reality: the case of electric circuits. Journal of Computer Assisted Learning, 16, 14-26.
  54. Sadler, P. M., Whitney, C. A., Shore, L., & Deutsch, F. (1999). Visualization and representation of physical systems: Wavemaker as an aid to conceptualizing wave phenomena. Journal of Science Education and Technology, 8, 197-209.
  55. Sim, J. (2006). Secondary school science teachers' perceptions about professionality and in-service training program for experiment. The Korean Society of Biology Education, 34(1), 27-37.
  56. Snir, J., Smith, C., & Grosslight, L. (1993). Conceptually enhanced simulations: A computer tool for science teaching. Journal of Science Education and Technology, 11, 373-388.
  57. Stoll, C. R. T., Izadi, S., Fowler, S., Green, P., Suls, J., & Colditz, G. A. (2019). The value of a second reviewer for study selection in systematic reviews. Research synthesis methods , 10(4), 539-545.
  58. Virk, S., Clark, D., & Sengupta, P. (2015). Digital games as multirepresentational environments for science learning: Implications for theory, research, and design. Educational Psychologist, 50, 284-312.
  59. Weinstein, Y., Madan, C. R ., & Sumeracki, M. A. (2018). Teaching the science of learning. Cognitive Research: Principles and Implication, 3, 2.
  60. Wiebe, E. N., Minogue, J., Jones, M. G., Cowley, J., & Krebs, D. (2009). Haptic feedback and students' learning about levers: Unraveling the effect of simulated touch. Computers & Education, 53(3), 667-676.
  61. Williams, R. L., Chen, M. Y., & Seaton, J. M. (2003). Haptics-Augmented Simple-Machine Educational Tools. Journal of Science Education and Technology 12, 1-12.
  62. Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y. L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43, 25-42.
  63. Yu, S. (2007). Effects of chemistry inquiry learning program using cyber laboratories and video materials (Master's thesis). Korea National University of Education, Chung-Buk, Korea.
  64. Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students' conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120-132. https://doi.org/10.1111/j.1365-2729.2006.00215.x
  65. Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students' conceptual understanding of physics. American Journal of Physics, 71, 618-629.
  66. Zacharia, Z., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students?. Early Childhood Research Quarterly, 27, 447-457.