• Title/Summary/Keyword: 과학탐구활동

Search Result 643, Processing Time 0.021 seconds

The effect of practicing the authentic open inquiry on compositions of laboratory reports (학생들의 보고서 쓰기에 대한 개방적 참탐구 활동 수행의 효과)

  • Kim, Mi-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.848-860
    • /
    • 2009
  • This study examined the characteristics of scientists' writing on the laboratory reports written in the authentic open inquiry, and explored the possibility that the class discussion after the inquiries could influence the laboratory report writing. The samples were 131 10th graders in a science high school in Seoul. The control group (n=45) practiced traditional school science inquiries, the experimental group 1 (n=43) practiced the authentic open inquiries, and the experimental group 2 (n=43) practiced the authentic open inquiries and the class discussion after the laboratory activities. Their laboratory reports were analyzed into three parts - prediction (prediction with background and apposite description), data analysis (data transformation and critical analysis), and conclusion (objective description based on evidence). The frequency of the characteristics of scientist's writing in the experimental group was higher than the control group. Particularly, the differences of the prediction with background (p<.01) and the critical analysis of data (p<.05) were statistically significant. However, the frequency of writing the conclusion based on evidence was very low in all of the three groups. The result from comparing descriptions of reports showed that the writing prediction in experimental groups were more elaborate, and the data transformation in experimental groups were more correct, and the evaluation to data in experimental groups were more critical than the control group. And the descriptions of the critical evaluation to data and the finding flaw in methods were found in experimental groups 2, indicating that the class discussion can stimulate students' scientific thinking.

Analysis of Preservice Elementary Teachers' Critiques of Peers' Inquiry-Based Instruction (예비 초등교사들의 동료 탐구 수업 비평 분석)

  • Lee, Shinyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.389-403
    • /
    • 2019
  • This study aims to analyze criteria and characteristics for preservice elementary teachers' critiques of their peers' inquiry-based instruction. This study reviews critiques written by 31 preservice elementary teachers enrolled in an elementary school science inquiry methods course wherein the teachers designed and implemented inquiry-based instruction. These preservice teachers participated in inquiry-based instruction as if they were elementary students and then evaluated their peers' instruction. Analysis of the critiques reveals that preservice teachers evaluated their peers' instruction on the following criteria: instruction context, science content, teaching strategies, students, instructional goals, non-verbal attitude, and assessment. Their beliefs about teaching science inquiry were reflected in the critiques. Additionally, it was found that four orientation for teaching inquiry-didactic, academic rigor, activity-driven, inquiry orientation-reflected in critiques; some of critiques held more than one of these orientations. And they did not merely criticize but suggested alternatives to general teaching strategies; furthermore, of inquiry-instruction specific teaching strategies. They showed higher epistemic understanding of inquiry-based instruction after mid-term demonstrations. The evidence demonstrated that the proportion of critiques specifically about inquiry-based instruction increased after the mid-term demonstrations. Moreover, the post mid-term critiques emphasized interaction between students as well as understanding of the nature of science. These findings could provide implication for teaching inquiry and criticizing others' instruction as part of elementary school science courses in preservice elementary teacher education.

An Analysis of Inquiry Activities in Chemistry II Textbook by Using 3-Dimensional Analysis Framework (3차원 분석틀을 이용한 화학II 교과서의 탐구활동 분석)

  • Seok Hee Lee;Yong Keun Kim;Seong Bae Moon
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.391-400
    • /
    • 2003
  • This study was performed the analysis of seven kinds of the hight school chemistry II textbooks based on the 6th curriculum. Particularly, inquiry activity part was analyzed by the three dimension framework which consists of inquiry content dimension, inquiry process dimension and inquiry context dimension. In the analysis of the inquiry content dimension of inquiry activities, the total number of themes in seven kinds of textbook was 212. And the number of inquiry activities in seven kinds of textbook was diverse: A textbook had 28, B textbook 25, C textbook 31, D textbook 35, E textbook 31, F textbook 29 and G textbook 33. As for the avaerage number of inquiry activities of each chapter, chapter I "Material Science" is 3.00(9.91${\%}$), chapter II "Atomic Structure and Periodic Table" 4.57(15.1${\%}$), chapter III "Chemical Bonding and Compound" 6.86(22.6${\%}$), chapter IV "State of Matter and Solution" 7.00(23.1${\%}$), chapter V "Chemical Reaction" 8.86(29.2${\%}$). For the analysis of inquiry process dimension, it follows in the order of 'observation and measuring (66.7${\%}$)', 'Interpreting data and formulating generalizations (26.5${\%}$)', 'seeing a problem and seeking ways to solve it (4.1%)', and 'building, testing and revising the theoretical model (2.7${\%}$)'. As for the analysis of the inquiry context dimension, the scientific context occupied 90.5${\%}$, the individual context 4.3${\%}$, the social context 0.9${\%}$, and the technical context 4.3${\%}$. It shows that the proportion of STS(Science-Technology-Society) related contents in inquiry activities was only 9.5${\%}$.

An Analysis of Inquiry Area in the Chemistry(II) Textbooks by the Inquiry Elements Based on the 7th Science Curriculum (제7차 과학교육과정의 탐구 요소들에 의한 화학(II) 교과서의 탐구 영역 분석)

  • Kang, Dae-Ho;Jeong, Soo-Goon;Koo, In-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.645-658
    • /
    • 2003
  • This study was carried out to analyze inquiry area of the chemistry (II) textbooks which were published by the 7th curriculum. The study attempts to analyze the degree to which chemistry (II) textbooks reflected the guidelines of the 7th science curriculum and propose educational suggestions for the inquiry learning. The analysis of the inquiry area was carried out based on the suggested inquiry elements of the 7th science curriculum. Overall, for the analysis of inquiry elements, basic inquiry elements except classifying suggested by the 7th science curriculum were well reflected on the textbooks. However, for the integrated inquiry elements, interpreting data takes almost half of the total integrated inquiry elements. Other integrated inquiry elements except drawing conclusion and transforming data were reflected less than ten percent. Investigation was also reflected less than ten percent of all inquiry activity. And inquiry activities were limited in terms of variety with few projects and no field trip. The main essence of the 7th science curriculum is the emphasis on total inquiry learning through various integrated inquiry elements and inquiry activities for higher grade students. Thus it is suggested that teachers provide inquiry learning which can supplement the textbook.

An Analysis of Inquiry Activities Performed by Pre-service Elementary Teachers to Learn Optical Phenomena Using Algodoo Simulations (Algodoo 시뮬레이션을 활용한 초등 예비교사의 광학 현상 탐구 활동 분석)

  • Park, Jeongwoo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.538-552
    • /
    • 2022
  • This study attempted to understand the characteristics of pedagogic activities performed by pre-service elementary school teachers. To this end, it applied Algodoo simulations to analyze the actions of students and obtain educational implications for optical learning. The study's participants comprised 79 first-year students enrolled in a teacher training college. Their activities could be classified as representation reproductions, verification experiments, and inquiry experiments. Students who performed representation reproduction exercises replicated renowned and authoritative exemplars, apprehending and demonstrating their principal features through simulations. Students performing verification experiments attempted to validate previously learned optical concepts by reviewing the relevant theoretical contexts. Such students primarily conducted simple experiments. Students accomplishing inquiry experiments used simulations to explore phenomena they did not know. Some of them even investigated optical phenomena beyond the domain of general physics. The above results confirmed that free optical experiments performed using Algodoo can effectively denote starting points for learners to engage in activities at varying levels. Additionally, students require assistance from instructors in addressing queries about the application of the principles and models related to optics. This study suggests ways in which instructors should help students at each level of activity. Additionally, the paper presents examples of varying levels of inquiry-related activities available on Algodoo. It also discusses the advantages and disadvantages of performing inquiry-based activities on Algodoo and suggests ways of enhancing the learning achieved through this platform.

The Effect of Peer Review to the Improvement of Gifted Elementary Science Students' Open Inquiry (동료평가가 초등과학영재의 개방적 탐구 개선에 끼치는 영향)

  • Kim, Sue-yeon;Jhun, Youngseok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.969-978
    • /
    • 2016
  • The purpose of this study is to figure out gifted elementary science students' improvement in performing open inquiry after peer review. In this study, gifted fifth-grade students performed open inquiry and review of each other as peers after the inquiry. Students' inquiries were evaluated and the influences of the feedback from the peer reviews were analyzed in relation to the inquiry performances. As a result of this study, three key points were discovered: First, the evaluation score increased with frequent feedback or long discussions. On the other hand, with less feedback, the evaluation score didn't rise. Second, there were three types of improvement in inquiry related to peer review: No. 1 was improvement after feedback given by themselves. No. 2 was reflection of feedback given to other groups. As a last type, No. 3 was that the students learned from other groups' presentation without any feedback and improved their inquiry. Third, there were five kinds of giving feedback; (1) feedback understanding the inquiry correctly, (2) insufficiency of peer's inquiry without deep thought. (3) on the usefulness of the inquiry, (4) on the scientific and logic validity through critical thinking, and (5) how to develop the inquiry. In these kinds of feedback, the fourth kind of feedback (4) occurred most frequently but the fifth (5) occurred rarely. It means peer review helps students develop their critical thinking ability and teachers should encourage students to give peers feedback of the fifth kind.

A Case Study on the Features of Classroom Norms Formed in Inquiry Activities of Elementary Science Classes (초등학교 과학 수업의 탐구활동에서 형성되는 교실 규범의 특징에 대한 사례 연구)

  • Chang, Jina;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.303-312
    • /
    • 2015
  • The purpose of this study is to analyze classroom norms formed in inquiry activities of elementary science classes and to consider about the actual problems in enacting school science inquiry. Focusing on the inquiry activity cases of two classes, the data were collected through classroom observation, student interview, teacher interview and questionnaires. Firstly, classroom norms were categorized into three categories theoretically: norms for behavior guidance; general academic norms; and scientific inquiry academic norms. The subcategory norms of each category were extracted inductively and the features, the causes of formation, and the influences on inquiry of each norm were also analyzed. Based on the analyses on classroom norms, the researchers identified three actual problems in enacting school science inquiry. First, the collective traits of school science inquiry caused structural problems in science classrooms. Second, teachers used their authorities in different ways according to phases of instructions. Third, the conflict cases were reported between general values for education and specific values for science inquiry. Educational implications are discussed in terms of the practices of school science inquiry and of the understanding classroom phenomena.

An Analysis of Inquiry Activities in High School Physics Textbooks for the 2009 Revised Science Curriculum (2009 개정 과학교육과정에 따른 고등학교 물리 교과서 탐구활동 분석)

  • Kang, Nam-Hwa;Lee, Eun Mi
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.132-143
    • /
    • 2013
  • The purpose of this study was to examine the nature of inquiry activities proposed in high school physics textbooks that were developed based on the 2009 science curriculum in Korea. The inquiry activities were analyzed using the notion of scientific practices introduced in the Science Education Framework (NRC, 2012). The results showed that the inquiry activities in the textbooks emphasized two of eight types of scientific practices including "Analyzing and interpreting data" and "Constructing explanations". In contrast, the activities required students to "ask questions" only once in a total of 291 science inquiry activities. The other types of scientific practices appeared less than 10%. Also found was that the types of scientific practices were not relevant to the way inquiry activities were used for textbook content. Implications for the curriculum and science teacher education were discussed.

Analysis of Middle School Students' Difficulties in Science Inquiry Activity in View of Knowledge and Information Processing Competence (지식정보처리역량 관점에서 중학생들의 과학탐구활동 어려움 분석)

  • Son, Mihyun;Jeong, Daehong;Son, Jeongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.441-449
    • /
    • 2018
  • The knowledge and information processing competence is one of the essential competencies in an information-oriented society which is highly related to science education. The purpose of this study is to investigate middle school students' difficulties in science inquiry activity in view of the knowledge and information processing competence. Collection, processing, and application of information are extracted as common elements of the knowledge and information processing competence through literature search. Data were obtained from eight students of a middle school in Seoul for five months and were analyzed based on constant comparative method to extract students' difficulties. As a result, the element of information collection is observed through science inquiry and the element of information processing is observed in hypothesis setting step, inquiry result analysis step, and inquiry result sharing step. The element of information application is observed in the creation of posters for sharing and inquiry reports. Difficulties in information collection were found in lack of confidence in information gathering, systematic search strategy, and information reliability. Difficulties in information processing appeared in the inexperience of analysis program use, information transformation, and interpretation of linkage information. Difficulties in information application were caused by the lack of effective organization and effective expression of information. In this study, it is meaningful to provide a clue as to how the knowledge and information processing competence can be established in science education.

인터넷 실시간 자료를 이용한 고등학교 지구과학 학습 프로그램 개발 및 지원 홈페이지 구축

  • Gu, Ja-Ok;An, Hui-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.199-206
    • /
    • 2005
  • 지구과학은 실생활과 직접적으로 관련되거나 학생들이 친숙하게 생각하는 많은 개념들을 포함하고 있으며 이런 특성은 과학캠프나 자연탐사 활동에서 지구과학과 관련한 탐구주제가 학생들의 큰 호응을 얻는 사실을 설명할 수 있다. 하지만 정규 수업에서 이루어지는 지구과학 실험 수업은 교과서에 제시된 자료해석 위주의 실험이 많아 학생들의 흥미를 반감시키는 경우가 많으며 자료 측정과정에서 과학자가 느낄 수 있는 중요하고 귀중한 경험을 놓칠수 있다. 그런데 인터넷에서는 해양과 대기, 천문, 지질 각 분야에서 지속적으로 갱신되는 실시간 관측 자료를 제공해 주는 곳이 많으며 이 실시간 자료들을 고등학교의 지구과학 실험에 이용할 수 있도록 학습 프로그램을 개발하면 기존의 자료해석 실험이 가지는 한계를 극복하고 학생들의 지구과학에 대한 호응도를 높일 수 있으며 보다 다양한 탐구 능력을 향상 시킬 수 있다. 이러한 학습 프로그램의 특징은 탐구 중심 혹은 문제 해결 학습을 강조하는 현재의 교육 목표를 잘 반영할 수 있다. 본 연구의 목적은 인터넷에서 제공되는 지구과학 관련 실시간 자료들을 활용할 수 있는 고등학교 지구과학 학습 프로그램을 개발하고 이를 지원할 수 있는 홈페이지를 구축한 후 실제로 수업에 적용하여 교육적 효과를 확인하는 것이다. 연구 결과 실시간 자료를 이용하는 고등학교 학생들을 위한 지구과학 학습 프로그램을 12개의 주제에 대해서 완성했다. 먼저 지구과학실험 시간에 적용할 수 있는 2차시 분량의 학습 프로그램 6주제를 개발했는데 개발 주제는 '지진이 일어나고 있는 곳은 어디인가?', '진앙으로 판의 경계를 결정하기', '진앙의 위치를 찾아라', '암영대를 찾아라', '태양의 자전 주기를 측정하기', '태양활동' 이다. 각 주제별로 수업소개, 학습목표, 과정, 학습자료(학생 활동지, 기타 자료, 수업 내용과 관련한 실시간 자료 제공 사이트 목록), 평가 자료를 만들었다. 학생들의 활동 내용은 <지진이 일어나고 있는 곳은 어디인가?>의 주제를 예로 들면 학생들이 실시간으로 전 세계의 지진활동을 모니터하는 사이트에 접속하여 최근에 지진이 어디에서 일어났는지 알아보고 지난 30일 동안에 일어났던 규모 4 이상의 지진 자료를 다운 받아 세계 지도에 점으로 표시한다. 이 때 학생들은 손으로 진앙의 위치를 지도에 그리는 대신 엑셀의 그래프 기능을 이용하여 지도에 진앙의 위치를 나타내게 한다. 또 개인 과제 연구에 적용할 수 있는 학습 프로그램을 5가지 개발하여 학생들이 특정한 주제에 대하여 탐구 과제를 수행할 수 있게 했는데 개발된 주제는 '태양 활동으로 오로라 예측하기', '국제 우주 정거장을 찾아내자', '한반도 부근의 해양 기상과 해수의 물리적 상호 관계', '일기도 분석을 통한 태풍의 진로 예측', '우리 나라 조석 예측' 이다. 마지막으로 사이버 학습을 통해서 수업 시간의 제약 없이 과제 형태로 처치 가능한 학습 프로그램 개발 했는데 그 주제는 '태풍이 저위도에서 북상하는 이유?'이다. 개발된 프로그램 중 2차시 학습 프로그램은 과학고 중학생 영재반에게, 개인 탐구 과제는 과학고 1학년 학생들에게, 사이버 수업 형태는 과학고 2학년 학생에게 적용시켰다. 실시간 자료 활용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실시간 자료들을 이용한 학습은 학생들의 학습 의욕과 탐구 능력을 향상시켰으며 컴퓨터 활용 능력과 외국어 자료 활용 능력을 향상 시키는데도 도움을 주었다.

  • PDF