• Title/Summary/Keyword: 과학탐구능력

Search Result 467, Processing Time 0.029 seconds

Characteristics of Experimental Design and Evidence Choice of Elementary School Students in Problem Solving Process Related to Controlling Variable (변인통제 문제해결 과정에서 나타난 초등학생의 실험설계 및 증거제시 특성)

  • Kim, Sun-Ja;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.2
    • /
    • pp.111-121
    • /
    • 2005
  • The purpose of this study was to analyze characteristics of experimental design and evidence choice of the elementary school students in problem solving process related to controlling variable. For this study, 96 6th grade students were selected and tested with Science Reasoning Task. This study revealed that the types of experimental design were categorized as variance of control variable, controlling of causal variable, perfect controlling variable, imperfect controlling variable, variance of all variable. Prior belief had a strong influence on student's experimental design. The types of evidence choice were categorized as perfect controlling variable, controlling causal variable, variance of causal variable. The degree of controlling variable in evidence choice process was much lower than that in experimental design. Most students tended to choose evidence according to prior belief without controlling variable. The results of this study implied that student's prior belief and characteristic of science process skills should be considered to develop program for promoting controlling variable ability.

The Effects of Small Group-Based Active-Cooperative Learning Program for Gifted Education (영재교육을 위한 능동적 소집단 협력학습 프로그램의 효과)

  • Ju, Cook-Young;Choi, Sung-Bong
    • Journal of the Korean earth science society
    • /
    • v.29 no.6
    • /
    • pp.474-486
    • /
    • 2008
  • There has been an amounting interest and subjects in gifted education in recent years as a number of studies dealt with the development of gifted education programs. However, earth science area remained as a low profile in developing educational programs and materials that meet the varying curiosities and needs of gifted students with a focus on their characteristic development. This study developed a small group-based active-cooperative learning program in middle school to investigate the effects of the program in terms of the creative problem solving ability in science and learning attitude of the gifted students. Then the study examined the conceptions of the students after the implementation of the small group-based active-cooperative learning program. Findings of the study showed that there was a significant increase in participated gifted students' creative problem solving skills and their learning attitude. In addition, the small group-based active-cooperative learning program apparently increased the participants' interests, satisfaction, and participation toward the instruction, and significantly influenced their affective domain. It implies that these findings were not caused by the lectures from the teachers, but by the variety of activities in which the gifted students discussed and debated with the classmates to derive a positive reciprocal action. In conclusion, a small group-based active-cooperative learning program promoted a reciprocal action among all the students who participated in a small group by sharing their opinions and respecting each other.

Key Factors of Talented Scientists' Growth and ExpeI1ise Development (과학인재의 성장 및 전문성 발달과정에서의 영향 요인에 관한 연구)

  • Oh, Hun-Seok;Choi, Ji-Young;Choi, Yoon-Mi;Kwon, Kwi-Heon
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.907-918
    • /
    • 2007
  • This study was conducted to explore key factors of expertise development of talented scientists who achieved outstanding research performance according to the stages of expertise development and dimensions of individual-domain-field. To fulfill the research purpose, 31 domestic scientists who were awarded major prizes in the field of science were interviewed in-depth from March to September, 2007. Stages of expertise development were analyzed in light of Csikszentmihalyi's IDFI (individual-domain-field interaction) model. Self-directed learning, multiple interests and finding strength, academic and liberal home environment, and meaningful encounter were major factors affecting expertise development in the exploration stage. In the beginner stage, independence, basic knowledge on major, and thirst for knowledge at university affected expertise development. Task commitment, finding flow, finding their field of interest and lifelong research topic, and mentor in formal education were the affecting factors in the competent stage. Finally, placing priority, communication skills, pioneering new domain, expansion of the domain, and evaluation and support system affected talented scientists' expertise development in the leading stage. The meaning of major patterns of expertise development were analyzed and described. Based on these analyses, educational implications for nurturing scientists were suggested.

An Exploration of the Influencing Factors and Development of Effective Models of Science Teacher Efficiency (과학 교사의 효능감 관련 요인 탐색을 통한 과학 교사 효능감 형성 모형 개발)

  • Choi, Sung-Youn;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.6
    • /
    • pp.693-718
    • /
    • 2010
  • This study investigated secondary school science teachers' experiences to explore the influencing factors in science teachers efficiency (STE). The participants, thirty three secondary school science teachers who have more than four years of teaching experience, were interviewed about describing each teacher's experience throughout one's years of teaching. The grounded theory introduced by Strauss and Corbin (1998) was used to analyze the data in this study. The results of paradigm analysis revealed that STE is influenced by 125 concepts, 38 sub-categories, and 16 categories. In a paradigm model, the central phenomenon was 'constructing STE', and the causal condition was 'want to be a teacher' as career choice motivation. The contextual conditions that have an affect on the central phenomenon were 'self awareness of the teacher' and 'social awareness of the teacher.' The mediate conditions, which facilitated or restrained the action/interaction strategies, were 'societal tendency', 'school climate', and 'personal context.' The action/interaction strategies to control the phenomenon were 'following the line,' 'identifying effective teaching strategies,' 'taking teacher education programs,' and 'contributing to school improvement.' The consequences were 'teacher's self awareness', 'challenge,' and 'stagnating in teaching.' The overall conclusion drawn from this research is that, the definition of STE is beliefs in science teachers' capabilities to set up objects in some school teaching context and, organize and execute the course of action required to attain these. Additionally, STE has three dimensions of teacher's behaviors: science instructional efficiency, efficiency in engaging students, and efficiency in managing school conditions. This study offers insight into the nature of STE and theoretical framework. These findings may give science teachers and teacher educators the practical knowledge necessary to build effective training programs and interventions that would help increase STE and facilitate effective teaching.

An Analysis of Creativity-Personality Activiies in High School Science Textbooks according to 2009 Revised Science Curriculum (2009 개정 고등학교 과학 교과서에 제시된 창의·인성 활동 분석)

  • Han, Hwa-Jung;Shim, Kew-Cheol
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.599-611
    • /
    • 2014
  • The purpose of this research is to analyze creativity-personality activities given in the high school science textbooks, which developed according to 2009 Revised Science Curriculum, and to examine how goals of new science curriculum were reflected in sceince the textbooks. An analysis shows that the proportion of inquiry is the best high among the types of creativity-personality activities. Also it is organized for a various activities such as reading, writing and debate. As a result of analyzing creativity-personality activities regarding creative thinking and personality element, a variety of creative thinking and personality element was not composed. The creative thinking is primarily divergent thinking, convergent thinking and associative thinking appears in order. In addition, the caring of personality elements is the most, and then honesty, cooperation and responsibility appears in order. Thus, it is necessary to structure a variety of activities for edification of creativity-personality in high school science textbooks. As an analysis of creativity-personality activities regarding elements of the decision-making, the review process do not appear at all, and there are few decision points generally. Therefore, a rational decision making for the sake of edification should be provided with specific decision-making factors.

  • PDF

영재교육원 수료 학생에 대한 과학고등학교 정원 외 선발의 타당성 분석

  • Jeon, Yeong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.14 no.4
    • /
    • pp.47-70
    • /
    • 2004
  • We analyzed the validity of Science Highschool's selection process for the students from Science Gifted Education Center in order to suggest the direction of improvement. First of all, we invested the students' achievement in Mathematics and Science. As a result, we found that the students are not so good at mathematics and science through the selection process for the students from Science Gifted Education Center. However the difference is not statistically meaningful. On the contrary, The achievement of the students from Science Gifted Education Center is above average who were selected through the other course, e. g. the students who acquired the recommendation of principal, winner of prize in Olympiad of Mathematics or Science. We didn't find any meaningful result in the investigation of Affective Domain in Science. And then we found that the students prefer the generous environment through the selection process for the students from Science Gifted Education Center. As a whole, the selection process for the students from Science Gifted Education Center was not so satisfying. It should be reformed; we should examine the students' portfolio on the activities in the Science Gifted Education Center, and the entrance examination should include both divergent and convergent problems to find out the students' creativity. And the 3 dimensional process is also essential through the multiple steps.

Effects of In-depth Science Learning Through Multiple Intelligence Activities on the Science Inquiry Abilities and Interests of Elementary School Children (초등학교 과학과 심화학습에서 다중지능을 활용한 과학활동이 초등학생의 과학탐구능력과 흥미에 미치는 효과)

  • 이영아;임채성
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.2
    • /
    • pp.239-254
    • /
    • 2001
  • The in-depth learning course newly established in the 7th National Curriculum of Science is for students who have mastered regular subject matters on a science topic and want to learn it more deeply or by different ways. Individual learners have their own unique intellectual properties. The study examined the effects of in-depth science learning using multiple intelligence activities on the science inquiry abilities and interests of elementary school children. This study involved two fifth-grade science classes in Busan. Each class was assigned to comparison and experimental group. The science topics covered during the period of the study were Units of Matter and Earth. After studying each regular content formulated by the National Curriculum, the students of comparison group experienced traditional practices of in-depth science, whereas those of experimental one performed the Multiple Intelligence(MI) activities related to the content. Students of both groups were pre- and posttested using the inventories of Science Inquiry Ability and Science Interest. Also, after instruction on the topics, students were interviewed to collect more information related to their loaming. The results are as follows. First, the science inquiry abilities of children were increased by using activities based on MI during the in-depth science teaming. Two inquiry processes, that is, the Prediction which is regarded as one of the basic process skills in science and the Generalization regarded as one of integrated process skills showed statistically significant differences between the groups, although the differences of other skills not significant but more improvements in experimental group than comparison one. Second, the in-depth science loaming through MI contributed to the increasing of interests of the children in science. The scores on Science Interest measured in pretest and posttest with the two groups showed st statistically significant difference. For interest in science instruction, children of experimental group showed high level of interest for the various MI activities, and, although the comparison groups' level of the interest was low, they revealed that they want to experience the MI activities in future instruction of science. Interviews with the children randomly selected from the experimental group when they completed the in-depth programs showed that most of them had much interest in MI activities. Especially, they attributed significant meanings to the experiences of teaming with their friends and doing activities that they want to do. These findings have important implications about usefulness of MI in science instruction. The results also highlight the need for science teachers to provide a variety of experiences and to create environments which encourage the children to use MI to learn a science topic.

  • PDF

Analysis of Characteristics of Clusters of Middle School Students Using K-Means Cluster Analysis (K-평균 군집분석을 활용한 중학생의 군집화 및 특성 분석)

  • Jaebong, Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.6
    • /
    • pp.611-619
    • /
    • 2022
  • The purpose of this study is to explore the possibility of applying big data analysis to provide appropriate feedback to students using evaluation data in science education at a time when interest in educational data mining has recently increased in education. In this study, we use the evaluation data of 2,576 students who took 24 questions of the national assessment of educational achievement. And we use K-means cluster analysis as a method of unsupervised machine learning for clustering. As a result of clustering, students were divided into six clusters. The middle-ranking students are divided into various clusters when compared to upper or lower ranks. According to the results of the cluster analysis, the most important factor influencing clusterization is academic achievement, and each cluster shows different characteristics in terms of content domains, subject competencies, and affective characteristics. Learning motivation is important among the affective domains in the lower-ranking achievement cluster, and scientific inquiry and problem-solving competency, as well as scientific communication competency have a major influence in terms of subject competencies. In the content domain, achievement of motion and energy and matter are important factors to distinguish the characteristics of the cluster. As a result, we can provide students with customized feedback for learning based on the characteristics of each cluster. We discuss implications of these results for science education, such as the possibility of using this study results, balanced learning by content domains, enhancement of subject competency, and improvement of scientific attitude.

Eye Tracking Analysis for High School Students' Learning Styles in the Process of Solving on Earth Science I (지구과학 I 문제 해결 과정에서 나타난 학습유형에 따른 고등학생의 시선 추적 분석)

  • An, Young-Kyun;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.1
    • /
    • pp.50-61
    • /
    • 2017
  • The purpose of this study is to analysis eye tracking for high school students' learning styles in the process of solving in the behavioral domains of the College Scholastic Ability Test on Earth Science I. The subjects of this study were 50 students from two classes out of 4 classes in E high school in Chungcheong province. Among them, we conducted experiments by randomly sampling 2 students of each type of learning based on the criteria that they had not encountered the problem of Earth Science I from the past two years. The findings indicate that the item correctness rate of divergers, assimilators, convergers, and accommodators were higher in the knowledge domain, application domain, knowledge-understanding domain, and understanding domain. This confirms that there is a difference among the four learning styles in the level of achievement according to the behavioral areas of the assessment questions. The latter finding was that the high eye-share of AOI 2 appeared higher than AOI 1, 3, 4 in the course of solving the problems. This is because the four types of learners pay more careful attention to the AOI 2 area, which is the cue-or-information area of problem solving, that is, the Table, Figure, and Graph area. Therefore, in order to secure the fairness and objectivity of the selection, it is necessary that an equal number of questions of each behavioral domain be selected on the Earth Science I Test of the College Scholastic Ability Test in general. Besides, it seems to be necessary that the knowledge, understanding, application, and the behavior area of the inquiry be highly correlated with the AOI 2 area in development of test questions.

Relationships between Learning Styles and Science Process Skills of Students of the Gifted Class in Elementary School (초등과학영재학급 학생의 학습양식과 과학탐구능력 간의 상관관계)

  • Choi Sun-Young;Song Hyeon-Jeong;Kang Ho-Kam
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • The purpose of this study was to investigate the relation between the learning styles and science process skills of students of the gifted class in elementary school. Subjects were forty-eight students of the gifted class who are in the fifth grade studying at the gifted class of S elementary school in Bucheon, M and Y elementary school in Incheon on learning styles and science process skills of students. Learning Style Profile (LSP) was used as instrument to survey learning style of students of the gifted class which was developed by NASSP, and consists of four categories (cognitive skills, perceptual response, orientation and teaming preferences) and twenty-four subscales. The results of this study were as follows: 1. In the learning styles test, students of the gifted class have higher scores of spatial skill, sequential processing skill, persistence orientation, manipulative preference, temperature preference and afternoon preference than general class students, but they have lower scores of discrimination skill and lighting preference, and there were statistically significant difference. 2. In science process skills test, there were statistically significant difference between students of the gifted class and general students. 3. In the correlation between the learning styles and science process skills, there was positive correlation of observing skill with spatial skill and manipulate skill of cognitive skill domain. For classifying skill, there was positive correlation with visual perceptual response, but was negative correlations with auditory and emotive perceptual response of perceptual response domain and with evening preference and verbal risk orientation of study preference domain. For measuring skill, there was positive correlation with sequential processing skill of cognitive skill domain. For formulating hypotheses, there was controlling variables, there was positive correlation with sequential processing skill and simultaneous processing skill of cognitive skill domain, and with verbal-spatial preference and early morning study preference of study preference domain. When planning and managing the gifted class, it will be beneficial and effective to consider the meaningful relations between the elements of loaming style and science process skills in order to improve science process skills.

  • PDF