• Title/Summary/Keyword: 과학적 논증

Search Result 92, Processing Time 0.023 seconds

Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning (기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.203-220
    • /
    • 2021
  • We explored the performance improvement method of automated scoring for scientific argumentation. We analyzed the pattern of argumentation using automated scoring models. For this purpose, we assessed the level of argumentation for student's scientific discourses in classrooms. The dataset consists of four units of argumentation features and argumentation levels for episodes. We utilized argumentation clusters and n-gram to enhance automated scoring accuracy. We used the three supervised learning algorithms resulting in 33 automatic scoring models. As a result of automated scoring, we got a good scoring accuracy of 77.59% on average and up to 85.37%. In this process, we found that argumentation cluster patterns could enhance automated scoring performance accuracy. Then, we analyzed argumentation patterns using the model of decision tree and random forest. Our results were consistent with the previous research in which justification in coordination with claim and evidence determines scientific argumentation quality. Our research method suggests a novel approach for analyzing the quality of scientific argumentation in classrooms.

Suggestion of the Scientific Argumentation PCK Developmental Model for Preservice Earth Science Teachers through an Instructional Design Program Using Argumentation Structures (논증구조 수업설계 프로그램을 통한 예비 지구과학 교사의 과학논증 PCK 발달 모델 제안)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • In this study, after applying the argument structure class design program for 20 preservice earth science teachers, we conducted individual in-depth interviews, analyzed the data, and derived a scientific argumentation PCK development model. The scientific argumentation PCK development model consists of three dimensions: Scientific argumentation PCK, PCK ecosystem, and reflective practice. Scientific argumentation PCK is demonstrated in the process of designing or executing classes using argumentation structures as an instructional reasoning tool. PCK ecosystem, consisting of the existing conventional PCK components, is a dimension surrounding the scientific argumentation PCK, and these two dimensions develop by interacting with each other. Reflective practice regulates each dimension and develops it in various ways by mediating the two dimensions of the scientific argumentation PCK and the PCK ecosystem. The conclusions drawn based on the results are as follows: First, preservice science teachers can demonstrate scientific argumentation PCK in the process of design and implementation of lessons using argumentation structures as a pedagogical reasoning tool. Second, it is necessary to develop the PCK for pedagogical reasoning tools such as scientific argumentation PCK in advance for the development of science teachers' PCK, since the scientific argumentation PCK can develop various components of the PCK ecosystem. Finally, it is necessary to use scientific argumentation PCK to support the preservice teacher's reflective practice, seeing that the scientific argumentation PCK promotes the development of PCK ecosystem components by inducing reflective practice.

Methodological Review of the Research on Argumentative Discourse Focused on Analyzing Collaborative Construction and Epistemic Enactments of Argumentation (논증 담화 분석 연구의 방법론적 고찰: 논증활동의 협력적 구성과 인식적 실행의 분석을 중심으로)

  • Maeng, Seungho;Park, Young-Shin;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.840-862
    • /
    • 2013
  • This study undertook a methodological investigation on previous research that had proposed alternative methods for analyzing argumentative discourse in science classes in terms of collaborative construction and epistemic enactments of argumentation. The study also proposed a new way of analyzing argumentation discourse based on the achievements and limitations of previous research. The new method was applied to actual argumentation discourse episodes to examine its feasibility. For these purposes, we chose the studies employing Toulmin's argument layout, seeking for a method to analyze comprehensively the structure, content, and justification of arguments, or emphasizing evidence-based reasoning processes of argumentation discourse. In addition, we contrived an alternative method of analyzing argumentative discourse, Discourse Register on the Evidence-Explanation Continuum (DREEC), and applied DREEC to an argumentative discourse episode that occurred in an actual science classroom. The advanced methods of analyzing argumentative discourse used in previous research usually examined argument structure by the presence and absence of the elements of Toulmin's argument layout or its extension. Those methods, however, had some problems in describing and comparing the quality of argumentation based on the justification and epistemic enactments of the arguments, while they could analyze and compare argumentative discourse quantitatively. Also, those methods had limitations on showing participants' collaborative construction during the argumentative discourse. In contrast, DREEC could describe collaborative construction through the relationships between THEMEs and RHEMEs and the links of data, evidence, pattern, and explanation in the discourse, as well as the justification of arguments based on the flow of epistemic enactments of the argumentative discourse.

Development of an Analytical Framework for Dialogic Argumentation in the Context of Socioscientific Issues: Based on Discourse Clusters and Schemes (과학관련 사회쟁점(SSI) 맥락에서의 소집단 논증활동 분석틀 개발: 담화클러스터와 담화요소의 분석)

  • Ko, Yeonjoo;Choi, Yunhee;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.509-521
    • /
    • 2015
  • Argumentation is a social and collaborative dialogic process. A large number of researchers have focused on analyzing the structure of students' argumentation occurring in the scientific inquiry context, using the Toulmin's model of argument. Since SSI dialogic argumentation often presents distinctive features (e.g. interdisciplinary, controversial, value-laden, etc.), Toulmin's model would not fit into the context. Therefore, we attempted to develop an analytical framework for SSI dialogic argumentation by addressing the concepts of 'discourse clusters' and 'discourse schemes.' Discourse clusters indicated a series of utterances created for a similar dialogical purpose in the SSI contexts. Discourse schemes denoted meaningful discourse units that well represented the features of SSI reasoning. In this study, we presented six types of discourse clusters and 19 discourse schemes. We applied the framework to the data of students' group discourse on SSIs (e.g. euthanasia, nuclear energy, etc.) in order to verify its validity and applicability. The results indicate that the framework well explained the overall flow, dynamics, and features of students' discourse on SSI.

Exploring Preservice Teachers' Science PCK and the Role of Argumentation Structure as a Pedagogical Reasoning Tool (교수적 추론 도구로서 논증구조를 활용한 과학과 예비교사들의 가족유사성 PCK 특성 탐색)

  • Youngsun Kwak
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.56-71
    • /
    • 2023
  • The purpose of this study is to explore the role and effectiveness of argumentation structure and the developmental characteristics of science PCK with Earth science preservice teachers who used argumentation structure as a pedagogical reasoning tool. Since teachers demonstrate PCK in a series of pedagogical reasoning processes using argumentation structures, we explored the characteristics of future-oriented family resemblance-PCK shown by preservice science teachers using argumentation structures. At the end of the semester, we conducted in-depth interviews with 15 earth science preservice teachers who had experienced lesson design and teaching practice using the argumentation structure. Qualitative analysis including a semantic network analysis was conducted based on the in-depth interview to analyze the characteristics of preservice teachers' family resemblance-PCK. Results include that preservice teachers organized their classes systematically by applying the argumentation structure, and structured classes by differentiating argumentation elements from facts to conclusions. Regarding the characteristics of each component of the argumentation structure, preservice teachers had difficulty finding warrant, rebuttal, and qualifier. The area of PCK most affected by the argumentation structure is the science teaching practice, and preservice teachers emphasized the selection of a instructional model suitable for lesson content, the use of various teaching methods and inquiry activities to persuade lesson content, and developing of data literacy and digital competency. Discussed in the conclusion are the potential and usability of argument structure as a pedagogical reasoning tool, the possibility of developing science inquiry and reasoning competency of secondary school students who experience science classes using argumentation structure, and the need for developing a teacher education protocol using argumentation structure as a pedagogical reasoning tool.

Physics Teachers' Group Argumentation and Written Arguments about Physics Content and Teaching (물리 교사들의 교과 내용과 교수 학습에 관한 집단 논증활동과 개인적 논증 글 분석)

  • Lee, Eun Kyung;Kang, Nam-Hwa
    • Korean Educational Research Journal
    • /
    • v.38 no.2
    • /
    • pp.109-125
    • /
    • 2017
  • The purpose of this study was to examine how group argumentations mediated individual arguments by analyzing physics teachers' group argumentation and individual follow-up written arguments. Five in-service physics teachers participated in this study, two middle school and three high school teachers. The topics of argumentation included physics topics and pedagogy of them. Findings showed that the teachers constructed much more elaborated individual written arguments than group argumentation, which seemed to be resulted from different perceptions of teachers' verbal and written argumentations. Also, in their written arguments the teachers selectively utilized their colleagues' ideas shared during group argumentation. Lastly, teachers' argumentation showed different features between topics of physics and physics pedagogy. These differences were related to their orientations toward argumentation about content knowledge and teaching. These findings shed light on a productive physics teacher professional development in argumentation.

  • PDF

Analysis of Argumentation Levels in Preservice Earth Science Teachers, Lesson Plans (예비 지구과학 교사의 교수학습지도안에 나타난 논증 수준 분석)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • In this study, we apply a lesson design process using an argumentation structure to preservice earth science teachers and analyzed argumentation levels displayed in the lesson plans written by preservice teachers in the process. As a result of the study, the preservice teachers designed a logically structured lesson by reflecting more argumentation components in the final lesson plan than the first one. In addition, in the case of lesson topics in which all argumentation elements were not explicitly presented in textbooks or curriculum, preservice teachers could not clearly reflect some argumentation components in the lesson plan. The conclusions and implications based on the results are as follows: First, it is necessary to use the argumentation structure as a tool to design logical science lessons, considering that argumentation levels of lesson plans written by preservice science teachers were improved by using argumentation structures in instructional design. Next, it is necessary to cultivate the preservice science teacher's ability to reconstruct the curriculum for science lesson design using the argumentation structure since argumentation levels of lesson plans written by preservice science teachers were limited to the argumentation components presented in the textbook and curriculum. Additionally, it is necessary to develop and apply a preservice teacher education program that uses the argumentation structure in the context of actual teaching activities so that preservice science teachers can not only understand argumentation but also improve their class expertise.

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

Booth et al(2008)의 논증을 이용하여 대전국립중앙과학관 천문영역전시의 과학철학적 분석

  • Kim, Jeong-Yeop;O, Jun-Yeong;Kim, Cheon-Hwi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2011
  • 대전국립중앙과학관의 천문영역 전시가 Booth et al(2008)의 논증을 기초로 한 과학철학 측면에서 얼마나 잘 부합되는지 확인하는 것이 이 연구의 목적이다. 과학관은 비형식 교육기관 중 하나이다. 과학관의 전시물들은 관람자들에게 정보를 전달하고, 관람자들은 전시물들을 통하여 지식을 탐구한다. 그러므로 교육적 상호작용을 뒷받침하는 이론적인 기준이 필요하다. Booth et al(2008)이 주장한 논증모형은 관람객의 심리적인 진행과정을 고려한 과학철학이다. 그렇기 때문에 과학관 전시에 Booth et al(2008)의 논증이 적용된다면, 관람객들은 전시물들이 의도한 지식을 스스로 탐구 할 수 있다. 김정엽(2011)은 Booth et al(2008)의 논증을 이용하여 과학관 천문영역 전시형태를 재구성하였고, 대학생들을 상대로 설문 조사와 SPSS 통계 분석을 수행하여, 재구성한 전시형태가 정보전달과 지식 탐구 관점에서 기존보다 더 설득력 있음을 보인 바 있다. 최근 대전국립중앙과학관은 천문영역 전시를 개선하였다. 그러므로 개선된 전시가 Booth et al(2008)의 논증을 기반으로 한 기준에 적합한지를 재분석할 필요가 있다. 분석 결과, 거시적인 전시형태는 이전에 비해 큰 변화를 보이지 않았으나, 미시적인 전시내용은 상당히 많은 부분에서 개선이 있음을 확인하였다. 그 자세한 분석 내용과 결과를 논의한다.

  • PDF

An Analysis of Science Writing by High School Students through the Argumentation Structure Instruction: Focus on Writing tasks Based on Genres of Science Writing (논증 구조 교육을 통한 고등학교 학생들의 과학 글쓰기 분석: 과학 글쓰기 장르에 따른 글쓰기 과제를 중심으로)

  • Park, Jeong-Eun;Yu, Eun-Jeong;Lee, Sun-Kyung;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.824-827
    • /
    • 2009
  • The purpose of this study was to demonstrate the changes in structure and contents of different functional genre of science writing during high school using the argumentation structure. For this thesis, seven students of a girls' high school in the national capital region took the argumentation structure instruction for 40 hours for a month. As a result, considerable changes had occurred amid the Explanation genre, the Experiment-recount genre and the Exposition genre. In the Explanation genre and the Experiment-recount genre, noticeable progress had been made in the usage of the argumentation elements and scientific concepts and knowledge evolved in a more rarified and detailed manner. In the Exposition genre, argumentation structure had changed from the simple argumentation structure to the subordination or the multiplex argumentation structure. Simultaneously, it was affirmed that the types and number of the argumentation elements increased significantly along with enlargement of respective scientific concepts and knowledge. Hence, this implies students can determine their understanding of scientific facts and contents during the progress of developing the argumentation structure. It is necessary that students take the well-organized argumentation structure instruction.