• Title/Summary/Keyword: 과학적 개념

Search Result 2,777, Processing Time 0.039 seconds

Possibility of Science Concept Learning in Scientific Practice-Based Science Education: A Review Focused on Situated Learning Theories and Conceptual Agency (과학적 실행 기반의 과학 교육에서 개념 학습의 가능성 고찰 -상황 학습 이론과 개념적 행위 주체성을 중심으로-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.4
    • /
    • pp.477-486
    • /
    • 2022
  • This study explored a possibility of science concept learning in scientific practice-based science instruction through the review of literature about situated learning theories and practice-based science education. It was revealed that the situated learning theories were closely related to the recent trend in science education which emphasizes students' active engagement in scientific practices. From the perspective of situated learning, concept learning occurs in the process in which learners make use of concepts as resources and further develop the concepts through the emergence of conceptual agency during their participation in practices. The study also found that the situated learning perspectives could apply to science concept learning in scientific practice-based instruction: Science concepts are used as resources in practice-based science learning, students can better engage in scientific practices as they take advantage of science concepts as resources, and the emergence of conceptual agency can facilitate science concept learning during the participation in scientific practices. Implications for school science education were suggested.

A Comparison of Scientific Concepts Acquisition between Cognitive Conflict and Non-Conflict Groups in Korean Elementary Schools (초등학생의 갈등유발집단과 비갈등집단의 개념 형성 정도 및 지속 효과)

  • Park, Choon-Gil;Kwon, Nan-Joo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.273-282
    • /
    • 1998
  • The purpose of this study is to compare the effect of concept formation between conflicted case and non-conflicted case as a method of learning science concepts. This study consists of 8 classes in 5th and 6th grade of elementary school children's in Kyoung-Buk, which were divided into conflicted group and non-conflicted group. The research procedure is as follows : first, two groups were asked the introducing problems-one was asked the conflicting problem, the other was asked the non-conflicting problems. Futhermore, the incorrect-answered students of conflicting problems were classified into conflict group am the correct-answered students of non-conflicting problems were classified into non-conflict group. Secondly, the demonstration and picture presentation about the introducing problems were carried out. Thirdly, the researcher introduced scientific concepts to the students. Afterwards, posttests, made up of the same items, were presented to the students-three times-posttest, delayed posttest(one week), second delayed posttest(one month). Finally, the degree of concept formation between the two groups was compared and analyzed by these results.

  • PDF

Elementary Students' Conceptual Changes on the Geological Stratum by Cognitive Conflict Strategy (인지갈등 수업전략을 통한 초등학생들의 지층에 관한 개념변화)

  • Na, Jin-Ho;Jung, Mee-Young;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.777-789
    • /
    • 2005
  • Study courses using cognitive conflict strategy about geological stratum were performed on the 6th grade elementary students and their conceptual changes were investigated. Some misconceptions about geological stratum that the students have are as follows: (1) stratum was formed due to volcanic eruption, (2) gneiss composes the geological stratum, (3) folds in the stratum were formed due to vertical pressure from the top. The classes had positive effects on the changes of some the misconceptions: (1) the places where the stratum is filmed, (2) the kind of rock in the stratum, and (3) the reason for folding. However, there were no significant changes in the following items: (1) the reason that every layer consists of different sizes of grains. It shows that some misconceptions can be changed easily by cognitive conflict strategy, while others can not. We checked the students who didn't change their misconceptions after the test. These students have very strong misconceptions that most of the natural phenomena on the earth's surface are due to the internal heat pressure, and volcanic activity. Another affecting the students' misconceptions are the role of teachers in class and mass media, such as TV.

'Structured Contrastive Activity' : A Model of Instruction for Conceptual Change Which Contrasts Scientifically Idealised Contexts and Everyday Context ('구조화된 대비활동' : 일상적 상황과 이상적 상황을 대비시킨 개념변화 학습지도 모형)

  • Oh, Won-Kun;Kim, Jae-Woo;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.3
    • /
    • pp.347-355
    • /
    • 1998
  • This paper reports on a way of using cognitive conflict in order to bring about conceptual changes. Cognitive conflict occurs when there is a discrepancy in students mind between everyday events and the scientific concepts which are used to explain these events. In order to overcome this conflict auxiliary scientific hypotheses can be introduced, which makes the resolution easier. In this paper, we suggest a new model of conceptual change and a model of instruction named 'structured contrastive activity' which consists of three stages: contrastive discussion by introducing the auxiliary hypotheses for clarifying the cognitive conflicts of students, observing the phenomena in idealised contexts in order to increase the status of the scientific concepts, laboratory experiments which bridge the two contexts.

  • PDF

Integrating Concept Mapping and the Learning Cycle to Teach Genetics and Reproduction to High School Students (고등학생들의 생물학습에서 개념도와 순환학습을 통합한 수업의 효과)

  • Chung, Young-Lan;Lee, Eun-Pa
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.617-626
    • /
    • 2003
  • Although many studies have investigated the effectiveness of concept mapping and the learning cycle, in Korea none have explored the effectiveness of concept mapping and the learning cycle combined. This study explored the effectiveness of concept mapping, the learning cycle, and a combination of concept mapping/learning cycle(CL) in high school biology class. Students' science achievement, the science related attitudes and scientific inquiry ability was measured. The results indicated that concept mapping, the learning cycle, and CL treatment were significantly different from the traditional one in science achievement(p< .05). However, the three treatments were not significantly different from each other. No significant difference exists among different learnings in high and average-ability students. But, concept mapping was the most effective in low-ability students. For the students' scientific inquiry ability, CL and learning cycle were more effective than concept mapping and traditional learning. No significant difference exists among different learnings in high-ability students. CL and learning cycle were more effective than concept mapping and traditional learning in average and low-ability students. For the students' science related attitudes, concept mapping, the learning cycle, and CL were more effective than the traditional learning. But, there was no significant difference among these three groups.

The Effect of Using Multimedia Material of Seasonal Change on Middle School Students' Conceptual Changes (계절의 변화 멀티미디어 자료 활용이 중학생의 개념 변화에 미치는 효과)

  • Chung, Jung-In;Shim, Ki-Chang;Kim, Hee-Soo
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.545-557
    • /
    • 2004
  • The purpose of this study is to classify types of preconception on the seasonal change to middle school students and to find out how the developed multimedia material changes their conception in the seasonal change. The questionnaire about the variation of season consisted of 10 items. Questions are given to 80 ninth graders. Control and experimental group was 23 and 57 students, respectively and they were instructed for two class periods. A learning method using multimedia was applied to the experimental group. On the other hand, traditional teaching-learning method was used for the control group. A learning method using multimedia in this study had an effect on the conceptual changes (p$<$0.01). Data in this study was divided into six levels to classify the changes of concepts in detail. As a result, it showed that a learning method using multimedia was effective for students to make progress from unscientific to scientific concepts, to build up scientific concepts, to build up scientific concepts, and to elaborate scientific concepts as compared with traditional method.

Effect of Science Conceptual Model Completion Activity and Science Conceptual Model Modifying Activity on Middle-school Students' Achievement in Science Conceptual Learning (미완성 개념 모형의 완성 활동 및 주어진 개념 모형의 수정 활동이 중학생의 과학 개념 학습 성취도에 미치는 효과)

  • Kim, Jung-Kuk;Kim, Won-Sook;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The purposes of this study are to investigate the effects of the Science Conceptual Model Completion Activity and Science Conceptual Model Modifying Activity on middle-school students' achievement in science conceptual learning, and to analyze if there are any correlations among their achievements by purposed activities, their cognitive level and school science achievement. For the study, 112 middle school students were sampled for three groups, which are two experimental groups (Model Completion activity group, Model Modifying Activity group) and one control group. Pre- and post-tests were taken to measure the students' achievement in science concepts, and the logical thinking ability test was administered after the implementation period. In addition, their school science achievements were analyzed. The research findings are as follows: First, the Science Conceptual Model Completion activity is more effective for middle school students' science conceptual learning than the Science Conceptual Model Modifying activity or conventional activity. Second, higher school science achievement also results in higher achievement of science concepts through the Conceptual Model Modifying activity or the Conceptual Model Completion activity. Lastly, the Conceptual Model Completion activity is more effective for the concrete operational level students to attain science concepts than formal operational level ones. Meanwhile, on the contrary, the Conceptual Model Modifying activity is more effective for formal operational level students than the concrete operational level ones.

Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line (척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석)

  • Park, Eun-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • Size/scale is a central idea in the science curriculum, providing explanations for various phenomena. However, few studies have been conducted to explore student understanding of this concept and to suggest instructional approaches in scientific contexts. In contrast, there have been more studies in mathematics, regarding the use of number lines to relate the nature of numbers to operation and representation of magnitude. In order to better understand variations in student conceptions of size/scale in scientific contexts and explain learning difficulties including alternative conceptions, this study suggests an approach that links mathematics with the analysis of student conceptions of size/scale, i.e. the analysis of mathematical structure and reasoning for a number line. In addition, data ranging from high school to college students facilitate the interpretation of conceptual complexity in terms of mathematical development of a number line. In this sense, findings from this study better explain the following by mathematical reasoning: (1) varied student conceptions, (2) key aspects of each conception, and (3) potential cognitive dimensions interpreting the size/scale concepts. Results of this study help us to understand the troublesomeness of learning size/scale and provide a direction for developing curriculum and instruction for better understanding.

Perceptions and Perspectives of Secondary Science Teachers on Core Concepts (핵심 개념에 대한 중등 과학 교사들의 인식 및 관점)

  • Eun-Jeong Yu
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.47-61
    • /
    • 2023
  • Rather than an abstract discourse, the purpose of this study is to outline the core concepts in the 2015 revised curriculum as a concrete teaching and learning method in the school context. We interviewed eight secondary science teachers and reported their perceptions and perspectives on core concepts using a backward design model based on the cyclical process of the platform, deliberation, and design for developing teaching and learning materials to understand core concepts. The participants perceived these core concepts differently, such as big ideas corresponding to the ultimate principle, minimum science concepts required for daily life, and primary and significant key concepts. In addition, this affects the association of teaching and learning. When core concepts are understood as transferable and expandable big ideas, there is a tendency to focus on the relationship between concepts and design project learning in a specific direction. However, if core concepts are identified as minimum science concepts at the level of science literacy, that can be recalled within the context of life, there is a tendency to emphasize on activities that make a meaningful difference to the lives of students with focus on case studies that are relevant to everyday life. Once core concepts are identified as key scientific content elements, such as basic or significant concepts, teachers recognize that it is essential to emphasize concept changes by correcting misconceptions, acquiring accurate scientific knowledge, and developing problem-solving items through paper-and-pencil evaluation. As the 2015 revised curriculum is finalized and the 2022 revised curriculum is scheduled for release, effective policy support is required to ensure that the curriculum is revised, which emphasizes the purpose of big ideas by naming core concepts as core ideas, to be stably implemented in schools.

On Enhancing Science Culture and Evaluating Scientific Literacy: Focusing on PISA's Projects (과학문화의 증진과 과학적 소양의 평가: PISA의 평가사례를 중심으로)

  • Lim Byoung-Kap
    • Journal of Science and Technology Studies
    • /
    • v.1 no.1 s.1
    • /
    • pp.51-68
    • /
    • 2001
  • Science cultures in the dimension of social interaction must be correlated with science cultures or science literacy in the dimension of psychological interaction. In order to develop a mature science culture, it must be assumed 1) that a science culture in a society ran be evaluated and 2) that we have to set up the criteria for evaluating it. This paper, based on the assumptions, makes an attempt to analyze the concept of science literacy underlying the PISA (Programme for International Student Assessment) conducted by OECD. The analyses are driven by the questions such as 'which philosophical backgrounds are absorbed into the concept of PISA' science literacy?' and 'What suggestions can be found with respect to the goal of enhancing the science culture?' In conclusion, the science literacy in PISA reflects the elements proposed by logical empiricism, naturalized philosophy of science, and social constructivism, which are being incorporated by the 'collaboration research program' conducted by the newly-emerging interdisciplinary field of 'science of science.' Finally, some further suggestions are added to the analyses to pursue more positive directions to induce mature science cultures in our society.

  • PDF