• Title/Summary/Keyword: 과학영재 학생

Search Result 666, Processing Time 0.026 seconds

An Analysis of Elementary Science-gifted Students' Argumentation during Small Group Science Inquiry using Concept Cartoon (개념 만화를 활용한 소집단 과학 탐구활동에서 나타난 초등과학 영재 학생들의 논증활동 분석)

  • Choi, Gwon Yong;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.115-128
    • /
    • 2014
  • Students' argumentation during science inquiry should be regarded important as it could help students to make meaningful connections between theories and experiments and to make scientific claims based on evidences. In this study, elementary science-gifted students' argumentation during small group inquiry was analyzed according to inquiry process. There were three stages of argumentation during students' inquiry. The first argumentation was to predict what would happen(Prediction stage). In this stage, the scientific problem was presented by concept cartoon as a way to start and to facilitate students' argumentation. The second argumentation was to design an experiment to solve the problem(Planning stage) and the third was to interpret the result of experiment(Interpretation stage). The discourse move, level of grounds and their relationship were analyzed to find the characteristics of argumentation during science inquiry. In terms of discourse move, 'Asking for opinion' was the most frequent whereas 'Claim' or 'Rebuttal' were rare. Students tended to listen to or ask others' opinion rather than provide their own claims or critics on others' opinion. 'Rebuttal' was shown a few times only during prediction and planning stage. There was no single 'Rebuttal' during interpretation stage. Students tended to easily accept or agree other student's interpretation of data instead of arguing their own ideas. In terms of level of grounds, students mostly provided their ideas without any attempt to justify their position. Especially during planning stage, students tended to suggest or decide ways of measuring or controlling variables without any grounds. They used evidences only a few times during prediction stage. In terms of relation between discourse move and level of grounds, students provided grounds most frequently when they dispute others' claims. The level of grounds were higher when they advocate or clarify their own or others' ideas than when they claim their ideas. The result of this study showed that the quality of elementary science-gifted students' argumentation during science inquiry was undesirable in many ways. Implications for scaffolding and facilitating argumentation during science inquiry were discussed.

Development of the Scientific Creativity Task for a Field Trip to Botanical Garden - Application to Science-Gifted Elementary Students - (식물원 야외체험학습에서 활용 가능한 과학 창의성 과제 개발 - 초등과학영재학생에의 적용 -)

  • Kim, Minju;Kim, Hyunju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.4
    • /
    • pp.506-521
    • /
    • 2020
  • This study aims to develop a scientific creativity task which science-gifted elementary students can conduct on a field trip to a botanical garden, and to analyze the results from conducting the task. For this, 38 science-gifted fifth-graders from the Science-Gifted Education Center, located at the Office of Education, participated in a field trip to a botanical garden, as a part of their program. Prior to the program, researchers developed a scientific creativity task for outdoor education program, along with science education specialists and teachers. The tasks were to observe plants, and to create something new and useful, or, in other words, scientifically creative, based on the plants' characteristics. The students could submit at most three ideas. Also, they assessed their own ideas, and selected an idea that they thought was the most creative. The results were analyzed by using the scientific creativity formula. The main findings from this study are as follows. First, it was found that the scientific creativity formula had an upward bias in assessing originality. Second, the students tended to assess the usefulness of their own ideas more generously. Third, the correlation between self-assessment results and scores from the scientific creativity formula for originality was r=.43. Fourth, in formula-based assessments, the correlation between originality scores and usefulness scores was relatively high, at r=.56. Fifth, the correlation between a student's scientific creativity score and the number of his or her ideas was very low, at r=.23. Sixth, when the ideas chosen as the most creative by students were compared with the ideas that had the highest scores in formula-based assessments, it was shown that 8 out of 19 students (42.1%) did not choose the idea that appeared to be the most creative when graded by the formula. This study is concluded by discussing the lessons from the scientific creativity task analysis for primary science education and gifted education.

The Relationship between Scientific Creativity of Science-gifted Elementary Students and Multiple Intelligence - Focusing on the Subject of Biology - (초등과학영재학생의 과학창의성과 다중지능의 관계 - 생명 영역을 중심으로 -)

  • Kim, Minju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.3
    • /
    • pp.369-381
    • /
    • 2020
  • This study aims to analyse the relationship between multiple intelligence and scientific creativity of science-gifted elementary students focusing on the subject of biology. For this, 37 science-gifted fifth-graders in the Science-Gifted Education Center at an Office of Education conducted a multiple intelligence test. In addition, researchers collected science-gifted students' results of scientific creativity activity at the botanical garden field trip. The main findings from this study are as follows: First, strong intelligence was logical-mathematical intelligence for gifted students, and weak intelligence was found to be naturalistic intelligence for them. Second, there was no significant correlation in the relationship between multiple intelligence and scientific creativity of science-gifted students. Third, as a result of independent two sample t-test for each intelligence and scientific creativity scores divided into the upper and lower groups, only verbal-linguistic intelligence statistically differed significantly at the level of p<.05 (t=2.13, df=35, p=0.04). Fourth, as a result of conducting a two-way analysis to see if there were any interaction effects, verbal-linguistic and visual-spatial, logical-mathematical and visual-spatial, logical-mathematical and bodily-kinesthetic, and visual-spatial and musical-rhythmic intelligence all showed significant values at the level of p<.05 level in interaction effects on originality element comprising scientific creativity. Fifth, an analysis of students with high naturalistic intelligence showed that their scores of scientific creativity tasks conducted at the botanical garden field trip were all lower. Based on the results of this study, this study discussed the implications of scientific creativity learning linking multiple intelligence in primary science education and gifted education.

An Analysis of Science-gifted Elementary Students' Perception of Speech and the Relationship between Their Voluntary Speech and Scientific Creativity (초등과학영재학생의 발표에 대한 인식 및 발표의 자발성과 과학창의성의 관계 분석)

  • Kim, Minju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.331-344
    • /
    • 2019
  • This study aims to analyse science-gifted elementary students' perception of speech in general school class, school science class, and science-gifted class and the relationship between their voluntary speech and scientific creativity. For this, 39 fifth-graders in the Science-Gifted Education Center at Seoul Metropolitan Office of Education in Korea were asked about their frequency of voluntary speech on each class situation, the reasons for such behavior, and their general opinions about speech. Also, researchers collected the teachers' observation on students' speech in class. To get the scores for students' scientific creativity, four different subjects of tasks were presented. The students' scientific creativity scores were used for correlation analysis with their frequency of speech. The main findings from this study are as follows: First, science-gifted elementary students tended to be passive in science-gifted class compared to general school and school science class. Second, the main reason for the low frequency of students' speech in school classes is that they do not have many opportunities to make presentations. Third, a survey of students' general thoughts on speech showed that more students wanted to make a speech voluntarily in class than the opposite. Fourth, the four different scientific creativity tasks had little correlation. Fifth, the correlations between the frequency of voluntary speech and the scores of scientific creativity were mostly low, with significant results only for plant task. Sixth, the correlations between the frequency of voluntary speech and the two components that make up scientific creativity, originality and usefulness, were also mostly low, but significant results for both were found in plant task, with originality having a higher correlation than usefulness. Based on this results, this study discussed the meanings and implications of students' voluntary speech on elementary science education and creativity education.

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.

Development and Application of Learning on Geological Field Trip Utilizing on Social Construction of Scientific Model (과학적 모델의 사회적 구성을 활용한 야외지질학습 개발 및 적용)

  • Choi, Yoon-Sung;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.178-192
    • /
    • 2018
  • The purposes of this study were to develop and apply on learning on geological field trip utilizing the social construction of scientific model. We developed field trip places by considering not only Orion (1993)'s novelty space but also the achievement standards of 2015 national curriculum. The subjects of the study were 8 in the 'G' science gifted education center. We conducted a study using the theme of 'How was formed Mt. Gwanak?' on 5 lessons including a series of 2 field trip lessons and 3 lessons utilizing the social construction of scientific model. Students participated in pre- and post-test on the understanding of scientific knowledge about formation of mountain. Semi-structured interview was used to analyze students' learning about geological field trip in terms of affective domain. Results were as follows. First, there were 2 places of upper-stream valley and down-stream valley separately. They contained outcrops gneiss, granite, joint in the valley, xenolith, fault plane, mineral in the valley. Second, pre- and post-test and semi-structure interview were analyzed in terms of what scientific knowledge students learned about and how Mt. Gwanak was formed. Seven students explained that Mt. Gwanak was volcano during pretest. Seven students described how granite was formed to form Mt. Gwanak. They also understood geological time scale, i.e., metamorphic rock. Third, the geological field trip was effective to low achievement geoscience students as they engaged in the activities of field trip. Using positive responses on affective learning was effective on learning on geological field trip when utilizing the social construction of scientific model. This study suggests that teachers use an example 'model' on geoscience education. This study also suggests that teachers apply the social construction of scientific model to geological field trip.

The Comparison on Preferences about Class Forms and Class Environments between the Science Gifted Students and Normal Students (수업형태와 수업환경에 대한 과학영재와 일반 학생들의 선호도 비교)

  • Jeon, Eun-seon;Lee, Hyeong-cheol
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.346-354
    • /
    • 2015
  • The purpose of this study was to be a help with designing science curriculum and developing science programs for the science gifted students by comparing their preferences about science class forms and class environments between science gifted students and normal students. For this study, 2 classes of science gifted students and 5 classes of normal students in 4th, 5th grade joined in this survey and their preferences about science class forms and class environments were checked using questionnaire. As a result, the following findings were obtained. First, in the area of class form, from comparing their preferences about teaching content domain, science gifted students showed meaningful higher preferences in all factors such as clarification, structuralization, thinking of high level and diversification. In comparing their preferences about teaching process domain, science gifted students also showed meaningful higher preferences in all factors such as diversification and self directed learning. Second, in the area of class environment, from comparing their preferences about classroom domain, science gifted students showed meaningful higher preferences in all factors such as teacher's support and rule and organization. In comparing their preferences about mentality domain, science gifted students also showed meaningful higher preferences in all factors such as influence of friends and parents. Third, in science gifted students, from comparing their preferences by gender about science class forms and class environments, female students showed meaningful higher preferences in factors of clarification. And in other factors females showed similar preference tendency with male students. In normal students' comparing, female students showed meaningful higher preferences in factors of teacher's support. And male students showed meaningful higher preferences in factors of high level thinking and influence of friend and influence of parents.

Characteristics of Student-Generated Analogies, Mapping Understanding, and Mapping Errors on Saturated Solution of Scientifically-Gifted and General Elementary Students (포화 용액 개념에 대해 초등 과학 영재와 일반 학생들이 만든 비유의 특성과 대응 관계 이해도 및 대응 오류)

  • Noh, Tae-Hee;Yang, Chan-Ho;Kang, Hun-Sik
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.292-303
    • /
    • 2009
  • In this study, we investigated the characteristics of the analogies, the mapping understanding, and the mapping errors on saturated solution of scientifically-gifted and general elementary students. Fifth graders (n=60) at four scientifically-gifted education institutes in Seoul and/or Gyeonggi province and fifth graders (n=91) at three elementary schools in Seoul were selected and assigned to the scientifically-gifted group and the general group respectively. After the students of each group performed the experiment and were taught about the target concept in the first class, they administered the test on the self-generating analogies on the target concept in the second class. The results revealed that the students in the scientifically-gifted group made more analogies, especially verbal/pictorial, structural/functional, enriched, and higher systematic ones, and had deeper understanding of the analogy than those in the general group. The numbers of the shared attributes included in the student-generated analogies and the scores of the mapping understanding of the students in the scientifically-gifted group were significantly higher than those in the general group. The students in the scientifically-gifted group had fewer mapping errors than those in the general group. However, not a few students in the scientifically-gifted group had at least one mapping error. Educational implications of these findings are discussed.

  • PDF

A Study on Scientifically-Gifted Students' Misconceptions regarding 'Small Living Things' (초등 과학 영재 학생들의 '작은 생물'에 대한 오개념 연구)

  • Kim, Se-Wook;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.485-494
    • /
    • 2007
  • The aims of this study were to investigate the differences of the proportion of misconceptions and the reasons for selecting responses related to questions about small living things between talented and average students. The study subjects were made up of three groups. They were a class of 37 talented elementary students in science attending J National University of Education, a class of 37 talented students in science attending J City Office of Education, and a class of 33 average students attending J City. A questionnaire was composed of 20 test questions for examination of concepts related to small living things. The data obtained in this study was analyzed using a statistical program. The major results were as follows: In general, the level of the scientific concepts possessed by the talented students was much higher than that of the average students, especially in question 14. The reasons for the misconceptions which were revealed through this study were classified into vagueness of the language used, hasty decision and deduction making, using the wrong analogical inference, mass communications (TV or internet) and experimental differences between individuals. In terms of the reasons for the selection of a given response, the talented students had also a higher frequency in the 'science books for children' category than the average students, indicating that various kinds of science books for children have an influence on the formation of concepts on small living things. The misconception proportion of male students was 5.4% higher than that of female students in mean frequencies of all questions, although the difference was not statistically significant except for question 4. Data from this study may help teachers involved in education for gifted students to reconsider their conceptions on small living things.

  • PDF

The Effects of Brain-Based STEAM Teaching-Learning Program on Creativity and Emotional Intelligence of the Science-Gifted Elementary Students and General Students (뇌 기반 STEAM 교수-학습 프로그램이 초등과학영재와 초등일반학생의 창의성과 정서지능에 미치는 효과)

  • Ryu, Je Jeong;Lee, Kil-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • The creative thinking and emotional trainings are very important educational issues in the knowledge-information-based future society. Recently STEAM education is suggested as one of the educational solutions to prepare the future society. The aims of this study are to develop STEAM teaching-learning program and analyze its effects on the creativity and emotional intelligence of science-gifted and general students in elementary school. Four different subject matters based on the 2007-revised curriculum were selected to construct the brain-based STEAM teaching-learning program consisting of 12 class hours. The program was applied to 50 elementary general students and 19 science-gifted elementary students. The findings of this research are as follows. The brain-based STEAM programs is effective to improve the creativity and emotional intelligence of science-gifted and general elementary students after class. The creativity of two groups was not statistically different before the class. However after class, the creativity of gifted-science students is significantly higher than that of general students. The emotional intelligence of gifted-science students was higher than that of general students before the class. Therefore in oder to analyze the different effects of the program on two groups in emotional intelligence, the test results of both group of students were analyzed by ANCOVA after class. This analysis also showed that the program is more effective in gifted-science students to improve the emotional intelligence compared to general students.