• Title/Summary/Keyword: 과소보강

Search Result 43, Processing Time 0.019 seconds

Effect of Shear Reinforcement and Compressive Stress on the Shear Friction Strength of Concrete (콘크리트의 전단마찰 내력에 대한 횡보강근 및 압축응력의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2016
  • This study examined the effect of transverse reinforcement and compressive stress on the shear friction performance at the shear interface intersecting two structural elements with various concrete types. From the prepared 12 push-off test specimens, various characteristics at the interface were measured as follows: crack propagation, shear load-relative slip relationship, initial shear cracking strength, ultimate shear friction strength, and shear transfer capacity of transverse reinforcement. The configuration of transverse reinforcement and compressive strength of concrete insignificantly influenced the amount of relative slippage at the shear friction plane. With the increase of applied compressive stress, the shear friction capacity of concrete tended to increase proportionally, whereas the shear transfer capacity of transverse reinforcement decreased, which was insignificantly affected by the configuration type of transverse reinforcement. The empirical equations of AASHTO-LRFD and Mattock underestimate the shear friction strength of concrete, whereas Hwang and Yang model provides better reliability, indicating that the mean and standard deviation of the ratios between measured shear strengths and predictions are 1.02 and 0.23, respectively.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Shear Mechanism of Reinforced High Strength Concrete Beams Without Shear Confinement (전단보강이 없는 고강도 철근 콘크리트 보의 전단역학적 거동에 관한연구)

  • 신성우;이광수;권영호;오정근
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.67-74
    • /
    • 1989
  • 건축물의 고충화, 대형화 및 특수화에 따른 콘크리트의 고강도화는 필수적이다. 그러나 고강도화는 높은 취성파괴 양성을 보여주며, 이들이 전단파괴의 병합될 때 구조체의 안전성에 큰 문제를 던져주고 있다. 본 연구는 고강도 콘크리트(f'c=800㎏/㎠)보가 전단보강이 되어있지 않은 경우 전단강도 및 파괴 양성을 조사하기 위하여 주요변수로서 전단스팬비(a/d)=3.0, 4.0, 6.0그리고 주근비 (ρt)=0.5ρb, 1.0ρb로 하였다. 실험결과, 현재의 건설부 극한강도 구조 규준식이나 ACI규준식은 주근량과 a/d의 효과를 과소평가하고, 콘크리트의 강도 증가에 따른 잇점은 과대평가하고 있는 것으로 판명되었다.

Evaluation of Shear Performance of Reinforced Concrete Beams for Varying Reinforcement Details of Web Opening (유공부 보강상세에 따른 철근콘크리트 유공 보의 전단 성능 평가)

  • Kim, Min-Jun;Lee, Bum-Sik;Kim, Dong-Whan;Kim, Hyeong-Gook;Lee, Yong-Jun;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • This study evaluates the shear performance of reinforced concrete members with web opening reinforcement. A total of 4 reinforced concrete members with or without openings were cast then tested. The main variables investigated were with or without of web openings and with or without of web opening reinforcement, respectively. The proposed web opening reinforcement was a rectangle and rhombus-shaped spiral considering of construct ability. Test result showed that the proposed web reinforcement had improved shear capacity and ductility of the specimens. It was found that the web opening reinforcement proposed in this study had a positive effect on the shear strength and crack control of RC beams with web openings. In addition, it was confirmed that the analytical results by the current design codes underestimates the test results of the specimens with the proposed web opening reinforcement.

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 강도 및 처짐 평가)

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.

Prediction of the Maximum Strain of Circular Concrete Columns Confined with Fiber Composites (섬유에 의하여 구속된 원형 콘크리트 기둥의 최대변형률 예측)

  • Lee, Jung-Yoon;Jeong, Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.726-736
    • /
    • 2003
  • Concrete columns confined with high-strength fiber composites can enhance its strength as well as maximum strain. In recent years, several equations have been developed to predict the behavior of the concrete columns confined with fiber composites. While the developed equations can predict the compressive strength of the confined columns with reasonable agreement, these equations are not successful in predicting the observed maximum strain of the columns. In this paper, a total of 61 test results is analysed to propose an equation to predict both compressive strength and maximum strain of concrete cylinders. The proposed equation takes into account the effects of confining pressure and cylinder size. Furthermore, in order to verify the proposed stress-strain curve for concrete cylinders, six cylindrical specimens were tested. Comparisons between the observed and calculated stress-strain curves of the tested cylinders showed reasonable agreement.

Effects of Shear Reinforcements on the Reinforced High-Strength Lightweight Concrete Beams (고강도 경량 철근콘크리트보의 전단보강 효과)

  • Shin, Sung-Woo;Lee, Kwang-Soo;Ahn, Jong-Mun;Choi, Myung-Shin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • In this study, fifteen reinforced high-strength lightweight concrete(HLC)beams were tested to investigate shear behavior of specimens according to shear reinforcement ratio. Test variables are shear span to effective depth ratio(a/d=2.5, 3.5, 4.5) and shear reinforcement ratio(0~1.0${\rho}_{v,ACI}$). Concrete compressive strength and tensile steel reinforcement ratio are constantly 439kg/$cm^2$ and 0.0203, respectively. Test results for the HLC beams showed that ACI code equation underestimates the shear strength of concrete($V_c$), and overestimates the shear strength of shear reinforcements($V_s$). It is revealed that the effectivenesses of shear reinforcements of reinforced HLC beams are lower than those of normal weight concrete beams. Then, the shear strengths of shear reinforcements are increased in proportion not to first degree of shear reinforcement ration but to square root of them.

Capacity Evaluation of High Strength SFRC Beams according to Shear Span to Depth Ratio (전단경간비에 따른 고강도 SFRC보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.76-83
    • /
    • 2014
  • The purpose of this study is to evaluate the shear strengthening effect of steel fiber in high strength SFRC beams. For this purpose, 13th specimens are prepared and structural tests are performed. Testing variables are shear span to depth ratio, steel fiber volume fraction, shear strengthening ratio in 60 MPa SFRC concrete. From the reviewing of previous researches and analyzing of material and member test results, shear span to depth ratio 2.5 and steel fiber volume fraction 1.0% can be having a maximum strengthening effect in steel fiber. Proposed shear strength estimation equation, which is considering steel fiber strengthening and shear span to depth ratio effect, underestimate the shear capacity of high strength SFRC beams. Therefore a detailed research on strength characteristics of high strength SFRC beams are needed.

Capacity Evaluation of Composite Beams Composed of End-Reinforced Concrete and Center-Steel (단부 RC조 중앙부 S조로 이루어진 합성보의 내력 평가)

  • Lee, Seung Jo;Park, Jung Min;Kim, Ki Wook;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.151-159
    • /
    • 2005
  • This study investigated the capacity evaluation of composite beam of the end-reinforced concrete, the center steel with attached main-bar of stud-bolt welting and flange with main parameter, such as shear span depth ratio (a/d=1.5, 2.5, 3.5), reinforcing method, reinforcing length, and steel main-bar ratio. The test results are summarized as follows: As the RC section becomes longer, the capacity ratio of Vsrc, test/Vsrc, the gradually decreased, with the tendency of decrease being remarkably more than a/d=3.5. The reinforcing method showed superior result both vertically and horizontally. And, capacity increase ratio displayed tendency that main-bar fixing length is obvious in 0.15L, and underestimate experimental value usually in Vsrc, Eq(3)~(5) equation. The capacity estimation was proposed equation by regression analysis with change of shear span depth ratio and main-bar fixing, steel main-bar ratio.

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 이정윤;박지선
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1010-1021
    • /
    • 2002
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.