• Title/Summary/Keyword: 공인성능시험평가

Search Result 32, Processing Time 0.025 seconds

A Study on Mobile Robot for Posture Control of Flexible Structures Using PI Algorithm

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • In this study, we propose a method for moving a device such as a flexible air sculpture while stably maintaining the user's desired posture. To accomplish this, a robot system with a structure of a mobile robot capable of running according to a given trajectory was studied by applying the PI algorithm and horizontal maintenance posture control using IMU. The air sculptures used in this study often use thin strings in a fixed posture. Another method is to put a load on the center of gravity to maintain the posture, and it is a system with flexibility because it uses air pressure. It is expected that these structures can achieve various results by combining flexible structures and mobile robots through the convergence process of digital sensor technology. In this study, posture control was performed by fusion of the driving technology of AGV(Automatic Guided Vehicle),, a field of robot, and technologies applying various sensors. For verification, the given performance evaluation was performed through an accredited certification test, and its validity was verified through an experiment.

Development of DAP(Dose Area Product) for Radiation Evaluation of Medical and Industrial X-ray generator (의료 및 산업용 X-선 발생장치의 선량평가를 위한 면적선량계(DAP) 개발)

  • Kwak, Dong-Hoon;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.495-498
    • /
    • 2018
  • In this paper, we propose an DAP system for dose evaluation of medical and industrial X-ray generator. Based on the DAP measurement technique using the Ion-Chamber, the proposed system can clearly measure the exposure radiation dose generated by the diagnostic X-ray apparatus. The hardware part of the DAP measures the amount of charge in the air that is captured by an X-ray. The high-speed processing algorithm part for cumulative radiation dose measurement through microcurrent measures the amount of charge captured by X-ray at a low implementation cost (power) with no input loss. The wired/wireless transmission/reception protocol part synchronized with the operation of the X-ray generator improves communication speed. The PC-based control program part for interlocking and aging measures the amount of X-ray generated in real time and enables measurement graphs and numerical value monitoring through PC GUI. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, the measured values using DAP increased linearly in each energy band (30, 60, 100, 150 kV). In addition, since the standard deviation of the measured value at the point of 4 division was ${\pm}1.25%$, it was confirmed that the DAP showed uniform measurements regardless of location. It was confirmed that the normal operation was not less than ${\pm}4.2%$ of the international standard.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Whole-body Management System using Ultra-Low Temperature Cyclical Cooling Method Combined with IT Technology (IT 기술을 접목한 초저온 순환 냉각 방식의 전신 관리 시스템)

  • Kim, Joo-Ho;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.673-676
    • /
    • 2020
  • In this paper, we propose a whole-body management system using ultra-low temperature cyclical cooling method combined with IT technology. The proposed system has the following characteristics. First, it minimizes maintenance costs by circulating nitrogen gas cooled by ultra-low temperature inside the controller. Secondly, based on the information measured by the temperature sensor and oxygen concentration sensor, nitrogen gas is supplied to provide safe ultra-low temperature whole-body management. Thirdly, after entering the user's height, it provides convenient, ultra-low temperature whole-body care that can be controlled using an automatic lift. Fourth, it provides an easy-to-access, easy-to-manage GUI and a manager-only web program for whole-body management system operation. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of ±5%, the world's highest temperature sensor accuracy, and a range of -110℃ to -150℃ greater than the world's highest whole-body management temperature range(-110℃ ~ -140℃). In addition, humidity was measured at less than 40%, the world's highest, and oxygen concentration was more than 18%, the world's highest. Therefore, the effectiveness of the methods proposed in this paper was demonstrated because they produced the same results as the world's highest levels.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

The Evaluation of Proficiency Test between Radioimmunoassay and Chemiluminescence Immunoassay (방사면역측정법과 화학발광면역측정법간의 숙련도 비교평가)

  • Noh, Gyeong-Woon;Kim, Tae-Hoon;Kim, Ji-Young;Kim, Hyun-Joo;Lee, Ho-Young;Choi, Joon-Young;Lee, Byoeng-Il;Choe, Jae-Gol;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • Purpose: To establish accurate external quality assurance (EQA) test, cross institutional and modality tests were performed using WHO certificated reference material (CRM) and same pooled patients serum. Materials and Methods: Accuracy and precision were evaluated using CRM and pooled patients' serum for AFP, CEA, PSA, CA 125, CA 19-9, T3, T4, Tg, TSH. To evaluate the accuracy and precision, recover test and coefficient variation were measured. RIA test were performed in major 5 RIA laboratory and EIA (CLIA) test were done in 5 major EIA laboratory. same sample of CRM and pooled serum were delivered to each laboratory. Results: In 2009, mean precision of total tumor marker of RIA was $14.8{\pm}4.2%$ and that of EIA(CLIA) was $19.2{\pm}6.9%$. In 2010, mean precision of 5 tumor marker and T3, T4, Tg, TSH was $13.8{\pm}6.1%$ in RIA and $15.5{\pm}7.7%$ in EIA (CLIA). There was no significant difference between RIA and EIA. In RIA, the coefficient variations (CV) of AFP, CEA, PSA, CA 125, T3, T4, TSH were within 20%. The CV of CA 19-9 was over 20% but there was no significant difference with EIA (CLIA) (p=0.345). In recovery test using CRM, AFP, PSA, T4, TSH showed 92~103% of recovery in RIA. In recovery test using commercial material, CEA, CA 125, CA 19-9 showed relatively lower recovery than CRM but there was no significant difference between RIA and EIA (CLIA). Conclusion: By evaluating the precision and accuracy of each test, EQA test could more accurately measured the quality of each test and performance of laboratory.

  • PDF

The Developement of Small 360° Oral Scanner Lens Module (소형 360° 구강 스캐너 렌즈 모듈 개발)

  • Kwak, Dong-Hoon;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.858-861
    • /
    • 2018
  • In this paper, we propose the development of a small $360^{\circ}$ oral scanner lens module. The proposed small $360^{\circ}$ oral scanner lens module consists of a small $360^{\circ}$ high resolution(4MegaPixel) lens optical system, a 15mm image sensor unit, and a small $360^{\circ}$ mouth scanner lens external shape. A small $360^{\circ}$ high resolution lens optical system produces a total of nine lenses, the outer diameter of the lens not less than 15mm for use by children through the ages of adulthood. Light drawn by a small $360^{\circ}$ high resolution lens optical system is $90^{\circ}$ flexion so that image images are delivered to image sensors. The 15mm image sensor unit sends the converted value to the ISP(Image Signal Processor) of the embedded board after an image array through the column and the row address of the image sensor. The small $360^{\circ}$ mouth scanner lens outer shape was designed to fix the race to the developed lens. Results from authorized testing agencies to assess the performance of proposed small $360^{\circ}$ oral scanner lens modules, The optical resolving power of $360^{\circ}$ lens was more than 30% at 150 cycles/mm, $360^{\circ}$ lens angle was $360^{\circ}$ in vertical direction, $42^{\circ}{\sim}85^{\circ}$ in vertical direction, and lens distortion rate was 5% or less. It produced the same result as the world's highest level.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.