• Title/Summary/Keyword: 공산오차

Search Result 14, Processing Time 0.019 seconds

A Study on Safety Standards for the Interior of an Artillery Firing Range Considering Probable Error (공산오차를 고려한 국내 포병사격장 안전기준 분석 연구)

  • Juhee Kim;Kieun Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • Safety standards for long-range artillery ammunition test and training sites follow the US artillery shooting range safety zone standards. Although the South Korean geographical conditions of shooting ranges are different from those of the United States, there is no safety standard reflecting the South Korean topographical characteristics. Probable error associated with the shooting range, trajectory should be considered in establishing the safety standards. In this study, we present the safety standards for the ammunition testing site suitable for the Korean situation, with applying a concept of trajectory and probable error differed by ammunition type, which are currently confirmed by the South Korean Army's artillery shooting.

Missile aerodynamic structure and parameter identification using the extended Kalman Filter and maximum likelihood method (확장 칼만 필터와 최대공산법을 이용한 미사일 공력계수)

  • 성태경;이장규;박양배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.262-265
    • /
    • 1986
  • 미사일의 동특성은 공력계수(aerodynamic coefficients)들의 구조 및 그 계수값에 의해 결정된다. 현재까지 공력계수는 풍동시험(wind tunnel test)에 의한 모형법으로 구하는 것이 보편적이었으나 모형과 실제 시스템의 차이에 의해 발생하는 오차, 풍동시험의 오차, 모형의 스케일 팩터(scale factor)오차, 실제 대기조건의 특성에 의한 오차 등에 의해, 시제품을 이용한 실제 비행시험 결과가 풍동시험 모델을 이용한 컴퓨터 시뮬레이션(computer simulation)의 가상 비행 데이타와 차이를 나타내게 된다. 이러한 차이를 감소시키기 위하여 필터 이론을 적용하기 위해서는 수학적 계수 모델이 필요하게 된다. 본 연구에서는 풍동시험모델로부터 3가지의 수학적 모델을 가정하고 이를 이용하여 확장칼만필터(extended Kalman Filter: EKF)와 최대공산법(maximum likelihood method :ML)을 각각 적용시켰을때 추정된 계수치에 의한 가상비행데이타와, 풍동시험모델에 의한 가상비행데이타를 비교하여, 수학적 계수 모델 설정에 따른 각 알고리즘의 추정결과를 알아보고, 이에의해 계수 모델 설정의 방법 및 기준, 그리고 계수구조 설정에 따른 EKF와 ML의 성질을 조사하였다.

  • PDF

Automatic Generation of Aimpoints Using 3D Target Shapes and CEP (3차원 모델 형상과 원형공산오차를 고려한 목표점 자동 생성 기법)

  • Kang, Yuna
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • This research proposes an automatic generation system of aimpoints with considering 3D target shapes and CEP(circular error probability) values after determining a target and an azimuth value. In the past, users decided aimpoints manually based on experience or just chose a middle point of the 3D model. Futhermore, it was not possible to select a proper position with consideration of azimuth because users should decide aimpoints before the azimuth value was determined. To solve this problem, this research provides a automatic system to compute proper aimpoints with 3D target shapes, azimuth values and CEP. This article contains the explanation of 3 steps for generating aimpoints automatically: first, generating a reference plane and candidate entry points, then computing scores of each entry points and finally determining an aimpoint from the entry point with the highest score. Users can easily determine a final aimpoint with high probability of success using this system.

A Precise Projectile Trajectory Registration Algorithm Based on Weighted PDOP (PDOP 가중치 기반 정밀 탄궤적 정합 알고리즘)

  • Shin, Seok-Hyun;Kim, Jong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.502-511
    • /
    • 2016
  • Recently, many kind of smart projectiles are being developed. In case of smart projectile, studying in advance, it uses a navigation data acquired from the GNSS receiver to check its location on the geocentric(WGS84) coordinates and to estimate P.O.I(point of impact). However, because of various error inducing factors, the result of positioning involve some errors. We introduce the advanced algorithm for the reconstruction of a navigation trajectory using weighted PDOP, based on a simulated trajectory acquired from PRODAS. It is very fast and robust to noise and shows reliable output. It can be widely used to estimate an actual trajectory of a projectile.

Research on Artillery Target Size Determination Method Considering Ballistic and Terrain Characteristics (탄도 및 지형 특성을 고려한 포병 표적지 크기 결정 방안 연구)

  • Juhee Kim;Kieun Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.355-363
    • /
    • 2024
  • This study proposes a method for determining the optimal target size for an artillery range considering ballistics and environmental conditions. To this end, the size of the probable error of each type of ammunition and charge determined during shooting were considered, and the effect of the firing position and target terrain characteristics on the target size was analyzed. In conclusion, the size of the target increased as the range increased, and a larger target size was required for the DPICM than for the general high explosive. Accordingly, the optimal target size must be determined by considering various factors such as topographical characteristics, shooting position location, and shooting range safety standards.

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

A Study on Simple Methodology of Distruction Effects Analysis 3 Dimensional Building Target's by Weapon Systems (무기체계 3차원 건물표적에 대한 간이 파괴효과분석 방법론 연구)

  • Park, Jinho;Choi, Sangyeong;Kim, Yeongho
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • In order to use missiles more effectively, assessing methodologies was advanced about weapon effects for various target types. We tried to find out the most effective analysis methodologies for missiles to attack 3 dimensional building target's and analyzed adaptedness as an assessing methodology. There are EFD (Expected Fractional Damage) and SSPD (Single Sortie Probability of Damage) methodologies to assess building target damage. In order to calculate effectiveness we used input parameter such as size of the target and CEP (Circular Error Probable), MAE_bldg (Mean Area of Effects for Building) of weapons and impact angle as encountering condition between the target and the missile. We compared EFD and SSPD, in order to analyze adaptedness as a effective methodology by CEP and MAE. The result was that EFD methodology was more adaptive to assess 3 dimensional building targets by missile systems than SSPD.

'Probable Errors' as an EIA Method to Define Project Impact Area - Focusing on the Preparation of 'Howitzer' Fire Training Site - (공산오차를 적용한 환경영향평가 대상지역 설정 기준에 관한 연구 - 곡사화기 사격장 조성사업을 중심으로 -)

  • Kang, Jaegu;Choi, Joon-Gyu;Cho, Kong-Jang;Joo, Yong-Joon;Han, Myung-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.495-502
    • /
    • 2007
  • In Korea, military authorities have neglected to consider impacts of military projects on local communities and natural environment. Moreover, local communities have had difficulties in dealing with the Ministry of National Defense (MND), which was stubborn enough not to implement environmental assessment on their projects. In this situation, recent case, "EIA of Baekgol Division's Howitzer Fire Training Site" in the Supreme Court-in which judges upheld the Higher Court's decision that the division violated the Environmental Impact Assessment law by ignoring to implement EIA-reveals that military projects can no longer forgo environmental assessment. The decision has serious ramifications on the future of Environmental Impact Assessment in military-led projects. This paper examines the proper scope of EIA in military-led projects and, more specifically, fire training site and searches for how to improve it through 'probable error,' a military training method that is applied to real 'howitzer' fire training. Probable error of the artillery field manual is nothing more than an error that exceeded as often as it is not exceeded and its scientific method was demonstrated through real fire tests in the US. Army. If it is applied to improve assessment methods about the proper scope of EIA in military 'howitzer' fire training site, 'probable error' will improve effect prediction, mitigation and reliability.

A BLUE Estimator of 3-D Positioning by TDOA Method (TDOA 방식 기반 3-D 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Tac-Yung;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.912-920
    • /
    • 2012
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) estimator for the 3 dimensional estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) technique. The BLUE derived for the case of estimating 3 dimensional position of the emitter with 4 base stations or sensors, and for this purpose, we used an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System (직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구)

  • Rhie, Ye Lim;Lee, Sangjin;Oh, Hyun-Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.