• 제목/요약/키워드: 공력영향

Search Result 248, Processing Time 0.021 seconds

Analysis of Aerodynamic Noise Generation from Pantograph Using Panhead Models of Simple-Geometry and Its Reduction (팬헤드의 단순 형상 모델을 이용한 판토그라프 공력소음 발생 특성 분석 및 저감 방안)

  • Yi, Suk-Keun;Yang, Won-Seok;Koh, Hyo-In;Park, Junhong
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.531-536
    • /
    • 2012
  • This study presents a result on aero-acoustic characteristics of pantograph panheads. To analyze the fluid flow around the panhead and resulting sound radiation, simple models of panhead were used in the numerical simulations called Lattice-Boltzmann method. The simulation results were verified using the wind tunnel test. The main aerodynamic noise was generated from the vortex shedding which is characterized by the Strouhal number, flow speed and geometry. The reduction in the radiated noise with simultaneously achieving increased lifting force was implemented for the simple rectangular geometry used in this study. Also, it was shown that the radiated sound power was significantly reduced by minimizing vortex shedding using through-holes or streamline shapes.

Development of aerodynamic noise measurement method for high-speed trains (고속철도차량의 공력소음 측정 시험법 개발)

  • Minseung Jung;Jaehwan Kim;Hyung-Suk Jang;Jonghwan Kim;Cheolung Cheong;Kwongi Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.131-137
    • /
    • 2024
  • Aerodynamic noise generated by the surrounding flow of a train traveling at high speed affects both outdoor and indoor noise. This study's goal is to develop a test method to measure and quantitatively evaluate aerodynamic noise through pressure perturbation data on the train surface. To accurately evaluate aerodynamic noise, it is important to separate and evaluate the compressive and incompressible pressure fluctuations mixed in the acquired surface pressure fluctuation data. This is because the noise transmission characteristics of the two pressure fluctuations are different. First, the installation length and interval of the microphone were determined to acquire surface pressure fluctuation data, and wavenumber-frequency analysis was performed to separate incompressible pressure fluctuation and compressible pressure fluctuation to obtain a sound pressure level spectrum. Finally, as a result of comparing the test results measured in the train head and trail, It was confirmed that the pressure fluctuation on the train head surface was greater than that on the tail.

Study on the Aeroservoelastic Stability Analysis with ZAERO (ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구)

  • Rho, Hong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • The aeroservoelastic analysis that deals with the interactions of the inertial, elastic, and aerodynamic forces and the influence of the control system have been performed. MSC Nastran was used for the free vibration analysis of the structure model as the pre-analysis. ZAERO was used to calculate the unsteady aerodynamic forces. The unsteady aerodynamic forces were verified by comparing with Doublet Hybrid Method. Karpel's Minimum-State Approximation method was used for approximation of the aerodynamic forces to the Laplace domain in the frequency domain. The aeroservoelastic state-space equation was obtained by combining the aeroelastic equation with the actuator dynamics. The analysis of aeroservoelastic stability concerning the elevator input of the high aspect ratio model was performed. The root-locus method and time-integration method were used for the analysis of aeroservoelastic in frequency and time domain.

Aerodynamic Interference Effect of Aircraft Wing Tip Vortex in Formation Flight (편대비행상태에서 날개 끝 와류의 공력 간섭 효과)

  • Cho, Hwan-Kee;Lee, Sang-Hyun;Lee, Soontae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.849-854
    • /
    • 2013
  • Experimental study was conducted to investigate aerodynamic interference effect of wing tip vortex in formation flight of high speed aircraft. In formation flight, wing tip vortex produced by leading aircraft can affect on the aerodynamic characteristics of trailing aircraft. The interference effect of flow is varied with distances between wing tips of leading and trailing aircraft. It is confirmed, in this study, that the interference of wing tip vortex generated from the leading aircraft makes the aerodynamic forces and moments of the trailing aircraft with the vertical or horizontal positions of the trailing aircraft. Especially, the lift coefficients of trailing aircraft were highly increased at y/b=-0.125, z/b=0.0 or deeply decreased at y/b=-0.5, z/b=0.38. The interfering pattern of wing tip vortices from two aircraft is precisely observed.

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

Analysis of flow characteristics around the sunroof opening variation with sunroof deflector angle (썬루프 디플렉터 각도에 따른 썬루프 개구부 주변 유동 특성 연구)

  • Lee, Sung Won;Shin, Seongryong;Choi, Eui Sung;Yi, Juwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2018
  • In the present study, flow characteristics and wind noises around the sunroof opening are analyzed variation with panoramic sunroof deflector angle. A mesh deflector is attached to reduce wind noise while a car is driving with the panoramic sunroof opening. A new forward inclined type deflector was invented to improve wind noise. The effect of this new concept of mesh deflector on the open-panoramic flow characteristics and wind noises were studied with CAT (Computer Aided Test) and wind tunnel test, which shows the reduction of open-panoramic wind noises such as sunroof buffeting, sunroof booming, and turbulent noise. Therefore, the forward inclined type deflector can efficiently improve wind noise with the same production cost.

Thrust and Aerodynamic Load Characteristics of an Internal Pintle Thruster (노즐 목 내부형 핀틀추력기의 추력 및 공력하중 특성)

  • Choi, Junsub;Kim, Dongyeon;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Numerical computations are performed to investigate the effect of pintle stroke on the performance of an internal pintle thruster. Results show that the thrust control ratio was less than 2% and the aerodynamic load ratio was 22% as the pintle stroke increased. The flow past the nozzle throat rapidly expanding because of the shape of the pintle, and a shock wave was generated. Particularly, at the pintle stroke distance of 4 and 5 mm, the shock wave hit the wall of the nozzle, results in peeling bubbles. Depending on the altitude, the thrust increased and the aerodynamic load decreased, but the difference was as small as 1.5%. In the presence of the bore, the reduction of the pintle tip area resulted in a decrease in aerodynamic load.

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport (버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구)

  • Jin-Yong Yang;Hyeok-Jin Lee;Min-Je Kang;Eunmin Kim;Rho-Shin Myong;Hakjin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2023
  • Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

Effect of Pintle Inflection Points on Performance of the SNECMA Modulatable Thrust Devices (핀틀의 변곡점 형상이 SNECMA 노즐목 가변 추력기의 성능에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.237-240
    • /
    • 2011
  • Numerical simulation was carried out to investigate the effect of pintle inflection point on the performance of the SNECMA modulatable thrust devices. Results show that the effect of inflection points in the pintle is to decrease aerodynamic load while maintaining required thrust level.

  • PDF

Effect of Nozzle Contraction Angle on Performance of the SNECMA Modulatable Thrust Devices (노즐 수축각이 SNECMA 노즐목 가변 추력기 성능에 미치는 영향)

  • Wang, Seung-Won;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.14-17
    • /
    • 2011
  • Numerical simulation was carried out for the SNECMA modulatable thrust devices, with four different nozzle contraction angle $45^{\circ}$, $60^{\circ}$, $83^{\circ}$, and $90^{\circ}$, respectively. Results show that $83^{\circ}$ nozzle contraction is better in that it comes up with good thrust level with small aerodynamic load.

  • PDF