DOI QR코드

DOI QR Code

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport

버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구

  • Jin-Yong Yang (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Hyeok-Jin Lee (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Min-Je Kang (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Eunmin Kim (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Rho-Shin Myong (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Hakjin Lee (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • 양진용 (경상국립대학교 기계항공공학부) ;
  • 이혁진 (경상국립대학교 기계항공공학부) ;
  • 강민제 (경상국립대학교 기계항공공학부) ;
  • 김은민 (경상국립대학교 기계항공공학부) ;
  • 명노신 (경상국립대학교 기계항공공학부) ;
  • 이학진 (경상국립대학교 기계항공공학부)
  • Received : 2022.12.01
  • Accepted : 2023.02.14
  • Published : 2023.04.30

Abstract

Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

도시 교통 혼잡과 환경 문제에 대한 대안으로 차세대 비행체 Urban Air Mobility(UAM) 항공기 개발이 주목받고 있다. 이를 위해, UAM 항공기가 수직이착륙할 수 있는 플랫폼인 버티포트(Vertiport) 역시 논의되고 있다. 버티포트로 인한 지면 효과는 UAM 항공기의 공력과 소음 특성에 직접적인 영향을 미친다. UAM 항공기는 인구가 밀집된 도심에서 운용되므로 엄격한 소음 규제가 예상되므로, 설계단계에서 공기역학적 현상과 공력 소음의 정밀한 예측이 요구된다. 본 연구에서는 Lattice-Boltzmann Method(LBM) 시뮬레이션과 투과면 기반의 Ffowcs Williams and Hawkings(FW-H) 음향상사법을 이용하여 지면 효과에 대한 공력, 유동장, 원거리 소음 방사 특성을 분석하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다. (NRF-2017R1A5A1015311, 2021R1C1C1010198)

References

  1. Y. Jun, K. R. Oh, J. Lee and K. H. Chung, "Urban Air Mobility Trend," Current Industrial and Technological Trends in Aerospace, vol. 18, no. 1, pp. 37-48, July 2020. 
  2. UBER elevate, Fast-Forwarding to a Future of On-Demand Urban air Transportation, October 2016. 
  3. J. S. Light., "Tip Vortex Geometry of a Hovering Helicopter Rotor in Ground Effect," Journal of the American Helicopter Society, vol. 38, no. 2, pp. 34-42, April 1993.  https://doi.org/10.4050/JAHS.38.34
  4. T. E. Lee, G. J. Leishman and M. Ramasamy, "Fluid Dynamics of Interacting Blade Tip Vortices with a Ground Plane," Journal of the American Helicopter Society, vol. 55, no. 2, pp. 22005-1-22005-16, April 2010.  https://doi.org/10.4050/JAHS.55.022005
  5. R. Healy, J. McCauley, F., Gandhi, O. Sahni and M. Mistry, "A Computational Investigation of Side-by-Side Rotors in Ground Effect," Proc. of the 77th VFS Annual Forum, pp. 1-18, May 2021. 
  6. T. Edwards and G. Price,"eVTOL Passenger Acceptance," NASA/CR-2020-220460, January 2020. 
  7. Ministry of Land, Infrastructure and Transport, Korean Urban Air Mobility Road Map, Sejong, May 2020. 
  8. FAA, "FAR Part 36, Aircraft Noise," Appendix G Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certifi-cation Tests on or After December 22, Septemper 1992. 
  9. J. W. Choi and C. Kahng, "Introduction of Noise Characteristics and Certification Standard for Rotorcraft," Journal of Aviation Development of Korea, vol. 55, no. 3, pp. 123-135, December 2010. 
  10. International Civil Aviation Organization, ICAO Annex 16 Volume I: Environmental Protection - Aircraft Noise, 8th Edition, ICAO, Montreal, Canada, July 2017. 
  11. S. Y. Wie, H. J. Kang and D. K. Kim, "Aerodynamic Noise Prediction of a Helicopter Rotor Blade for the Flight Conditions of Approach and Flyover," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 46, no. 8, pp. 671-678, August 2018. 
  12. J. Y. Yun and H. Hwang, "Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM)," The Journal of Korea Navigation Institute, vol. 24, no. 5, pp. 329-342, October 2020. 
  13. J. H. Choi, Y. Park and I. S. Jeon, "A Study on the Cost of Fare for UAM (Urban Air Mobility) Airport Shuttle Service," J. Korean Soc. Transp., vol. 39, no. 5, pp. 593-605, October 2021.  https://doi.org/10.7470/jkst.2021.39.5.593
  14. International Civil Aviation Organization, ICAO Annex 14 - Aerodromes - Volume I - Aerodromes Design and Operations, 9th Edition, ICAO, Montreal, Canada, July 2022. 
  15. M. V. Lowson,, "Basic Mechanisms of Noise Generation by Helicopters, V/STOL Aircraft and Ground Effect Machines," Journal of Sound and Vibration, vol. 3, no. 3, pp. 454-466, September 1998.  https://doi.org/10.1016/0022-460X(66)90109-X
  16. B. Smith, R. Healy, F. Gandhi and A. Lyrintzis, "eVTOL Rotor Noise in Ground Effect," Proc. of Vertical Flight Society's 77th Annual Forum & Technology Display, vol. 1, May 2021. 
  17. J. E. Ffowcs Williams and D. L. Hawkings, "Sound Generation by Turbulence and Surfaces in Arbitrary Motion," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 264, pp. 321-342, May 1969.  https://doi.org/10.1098/rsta.1969.0031
  18. F. Farassat and G. P. Succi, "The Prediction of Helicopter Rotor Discrete Frequency Noise," Vertica, vol. 7, pp. 309-320, January 1982. 
  19. C. Nardari, D. Casalino, F. Polidoro, V. Coralic, P. T. Lew, and J. Brodie, "Numerical and Experimental Investigation of Flow Confinement Effects on UAV Rotor Noise," Proc. of 25th AIAA/CEAS Aeroacoustics Conference, pp. 2497-1-2497-17, May 2019. 
  20. M. E. Kutay, A. H. Aydilek and E. Masad, "Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials," Computers and Geotechnics, vol. 33, no. 8, pp. 381-395, December 2006.  https://doi.org/10.1016/j.compgeo.2006.08.002
  21. P. L. Bhatnagar, E. P. Gross and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Physical review, vol. 94, no. 3, p. 511, May 1954. 
  22. H. Chen, S. Chen and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method," Physical review A, vol. 45, no. 8, R5339, April 1992. 
  23. H. J. Lee, J. Y. Yang, R. S. Myong and H. Lee, "Aerodynamic Analysis of Rotor Blade in Hovering and Forward Flight Using Lattice-Boltzmann Method," Journal of Computational Fluids Engineering, Vol. 26, no. 4, pp. 115-124, December 2022.  https://doi.org/10.6112/kscfe.2021.26.4.115
  24. E. M. Kim, J. Y. Yang, H. J. Lee, M. J. Kang, R. S. Myong and H. Lee, "Numerical Prediction of Rotor-Airframe Interaction Noise," Journal of Computational Fluids Engineering, Vol. 27, no. 3, pp. 79-88, September 2022.  https://doi.org/10.6112/kscfe.2022.27.3.079
  25. J. Y. Yang, H. J. Lee, R. S. Myong and H. Lee, "Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 50, no. 9, pp. 599-608, September 2022. 
  26. D. H. Kim, H. J. Kang, S. Y. Wie and S. H. Kim, "Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 41, no. 11, pp. 855-864, November 2013. 
  27. S. B. So and K. T. Lee, "The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 49, no. 8, pp. 699-708, August 2021.