• Title/Summary/Keyword: 공기 예측

Search Result 649, Processing Time 0.032 seconds

A Case of Lymphocytic Interstitial Pneumonitis (임파구형 간질성 폐렴 1예)

  • Jung, Hee-Jin;Cho, Eun-Rae;Shim, Jae-Jung;In, Kwang-Ho;Yu, Sae-Hwa;Kang, Kyung-Ho;Won, Nam-Hee;Choi, Young-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.5
    • /
    • pp.602-609
    • /
    • 1993
  • Lymphocytic interstitial pneumonitis (LIP) is one of parenchymal pulmonary infiltrative diseases first described at 1966 by Carrington and Liebow. In LIP, there is a predominance of mature small lymphocytes in the interstitium of the lung which form germinal centers. The disease process surrounds, but dose not invade lung parenchyme, tracheobronchial tree and vascular structures. The etiology remains still unknown and the clinical features of this disorder have not been clearly defined. Therefore, the therapeutic modality is obscure. Development of LIP association with AIDS is often reported currently and possibility of progress to malignant lymphoma is emphasized. We experienced a case of primary LIP with pnemomediastinum. She was adimitted due to chest and anterior nuchal pain with chronic coughing, and diagnosed as pneumomediastinum with LIP. Medication with steroid was begun and some improvement of symptoms was observed, but an X-ray film of the chest remained same without improvement. We report above case with review of the literatures.

  • PDF

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

Pressure Loss across Tube Bundles in Two-phase Flow (2상 유동 내 관군에서의 압력 손실)

  • Sim, Woo Gun;Banzragch, Dagdan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.181-189
    • /
    • 2016
  • An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.

A Study on Flow Characteristics of the Inlet Shape for the S-Duct (S-Duct 입구 형상에 따른 유동 특성에 관한 연구)

  • Lee, Jihyeong;Choi, Hyunmin;Ryu, Minhyoung;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.109-117
    • /
    • 2015
  • Aircraft needs an inlet duct to supply the airflow to engine face. A fighter aircraft that requires low radar observability has to hide the engine face in the fuselage to reduce the Radar Cross Section(RCS). Therefore, the flow path of the inlet duct is changed into S-shape. The performance of the aircraft engine is known to be influenced by the shape and the centerline curvature of the S-Duct. In this study, CFD analysis of the RAE M 2129 S-Duct has been performed to investigate the influence of aspect ratio of inlet geometry. The performance of the S-Duct is evaluated in terms of the distortion coefficient. To simulate the flow under adverse pressure gradient better, $k-{\omega}SST$ turbulence model is employed. The computational results are validated with the ARA experimental data. The secondary flow and the flow separation are observed for all computational cases, while the semi-circular geometry has been found to produce the best results.

A Study of the Advanced Strategy for ICT-based Public Compensation Business (ICT 기반 공익사업 보상업무 첨단화 방안 연구)

  • Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • Compensation services that are indispensable during large-scale public utilities projects have been gradually increasing with the recent increase in construction, but there are no systematic compensation services due to the complicated procedures and manual work. For this reason, various problems such as construction period delays due to various complaints, corruption in compensation work, and impossible to trace the history of compensation data in the past are emerging. In this paper, in order to solve this problem, in-depth interviews and questionnaires were conducted to find out the problems of each compensation status. Based on this, 3 core technologies and 10 technical needs based on ICT were selected to improve the compensation work by deriving STEEP analysis and Issue Tree. The three core technologies are big data-based decision-making and prediction technology, advanced measurement technology, and open cloud-based compensation platform technology. In order to introduce the derived technologies to the institutions in charge of compensation, the possibility of technology diffusion by project operators was suggested based on the results of the current status of informatization by institution. Based on the core technology derived from this paper, it is necessary to make a prototype that can be advanced in compensation work and apply it to each institution and analyze the effect.

TFWT and OBT Concentrations in Soybean Plants Exposed to HTO Vapor at Different Growth Stages (콩의 생육단계별 HTO 증기 피폭에 따른 작물체내 TFWT 및 OBT 농도)

  • Lim, K.M.;Choi, Y.H.;Lee, W.Y.;Park, H.G.;Kang, H.S.;Choi, H.J.;Lee, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.213-219
    • /
    • 2004
  • Soybean plants were exposed to HTO vapor in an exposure box for 1 hour at different growth stages. Relative concentrations of TFWT at the end of exposure (percent ratios of TFWT concentrations to mean HTO concentrations in air moisture in the box during exposure) decreased on the whole in the order of leaf > shell > seed > stem with the highest values of 40.2% and 6.4% for leaf and stem, respectively. TFWT concentrations reduced by factors of several thousands to several hundred-thousands from the end of exposure till the harvest. The reduction factor decreased in the order of leaf > shell > seed > stem. Relative OBT concentrations at harvest (ratios of the OBT concentration in the dry plant part at harvest to the initial leaf TFWT concentration, ml $g^{-1}$) were in the range of $2.2{\times}10^{-5}{\sim}9.5{\times}10^{-3}$ for seeds being the highest when the exposure was performed at the actively seed-developing stage. The exposure time-dependent variation in the OBT concentration was much greater in seeds and shells than in leaves and stems. It was indicated that OBT would contribute to almost all the radiation dose due to the consumption of soybean seeds in most cases after an acute exposure of growing plants to HTO vapor. Present results are applicable to establishing and validating soybean $^3H$ models for an acute accidental release of HTO.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Development of Actual Measurement Spacing Factor Using Spacing Data of Air Void in Concrete (콘크리트의 공극 간격 데이터를 활용한 실측간격계수 개발)

  • Lee, Jin-Bum;Jeon, Sung-Il;Kwon, Soo-Ahn;An, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.701-709
    • /
    • 2011
  • One of the typical evaluation models of concrete air-void system is spacing factor (SF), which was suggested by Power. Power Spacing Factor (PSF) has a disadvantage of the result being different from the actual case due to the existence of entrapped air, because PSF uses average single spacing factor. Therefore, the Actual Measurement Spacing Factor (AMSF) using actually measured data of air void spacing was developed from this study. PSF and AMSF were compared and evaluated in this study by using the image analysis test result of concrete mixture. This study results showed that PSF and AMSF are generally similar, but AMSF had a larger value when PSF was greater than $400{\mu}m$. The results indicated a possibility of PSF giving false measurement estimation where the measurement is less than the actual value in the concrete mixture containing less air. Also, in the result of PSF and AMSF analysis according to the existence of entrapped air, AMSF showed a larger value in the analysis without entrapped air. But PSF showed a smaller value in the analysis without entrapped air, which was different from the actual case. Because PSF used average single spacing factor, it tended to give a false result. The study results showed that AMSF gave more accurate analysis results.

Fog Nozzle-Greenhouse Cooling System Analysis (포그노즐을 이용한 온실냉방시스템 분석)

  • 김영중;유영선;윤진하;오권영;김승희
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • Among the various vegetables eggplant and gourd family can stand against high temperature environmental condition, about 35$^{\circ}C$. However, most of greenhouse farmers are giving up crop cultivation during hot summer season due to extreme temperature, 4$0^{\circ}C$ or above, condition of greenhouse interior. To improve this inferior crop growth condition, for nozzle system was installed in the pet greenhouse and the effect of fog system was investigated in order to determine fog water amount and the required fog nozzle numbers according to house volumes. MEE fog nozzle was selected for this Investigation which can produce water particle size of 27${\mu}{\textrm}{m}$ with water amount of 100$m\ell$ at pumping pressure of 70kg/$\textrm{cm}^2$. House cooling test was conducted in the pet greenhouse with one minute fogging and one minute air ventilation without stopping. It maintained 32$^{\circ}C$ at the house interior when the atmosphere and the house temperature were 35 and 4$0^{\circ}C$, respectively. And, an experimental equation was developed through calculating the changes of relative humidity and temperature with psychrometric equation which revealed the moisture transfer pattern between the house air and fog system. It showed that the required water fogging amounts to reduce 1$0^{\circ}C$, 40 to 3$0^{\circ}C$, needs 80.7$\ell$ for 1-2W(8,350㎥) and 99.9$\ell$ for 3-2G-3S(10,330㎥) type greenhouse with particle size of 27${\mu}{\textrm}{m}$.

  • PDF

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.