Browse > Article
http://dx.doi.org/10.3795/KSME-B.2016.40.3.181

Pressure Loss across Tube Bundles in Two-phase Flow  

Sim, Woo Gun (Dept. of Mechanical Engineering, Hannam Univ.)
Banzragch, Dagdan (Dept. of Mechanical Engineering, Hannam Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.40, no.3, 2016 , pp. 181-189 More about this Journal
Abstract
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Keywords
Two-phase Flow; Two-phase Friction Multiplier; Euler number;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Marchaterre, J.F., 1961, "Two-Phase Frictional Pressure Drop Prediction from Levy's Momentum Model," Trans. ASME, series C, J. Heat Transfer, Vol. 83, No. 4, pp. 503-505.   DOI
2 Martinelli, R. C. and Nelson, D. B., 1948, "Prediction of Pressure Drop During Forced Circulation Boiling of Water," Transactions of ASME, Vol. 70, pp. 695-702.
3 Sim, W.-G. and Mureithi N.W., 2014, "A Two-phase Damping Model on Tube Bundles Subjected to Two-phase Cross-flow," Journal of Mechanical Engineering and Technology, Vol. 28, No. 2, pp. 553-563.
4 Sim, W.-G., 2015, "Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-phase Crossflow," Trans. Korean Soc. Mech. B, Vol. 39, No. 1, pp. 97-107.   DOI
5 Sim, W. G. and Mureithi, N. W., 2013, "Drag Coefficient and Two-phase Friction Multiplier on Tube Bundles Subjected to Two-phase Cross-flow," ASME Journal of Pressure Vessel Technology, Vol. 135, 011302-1-011302-10.
6 Sim, W. G., 2013, "Pressure Distribution over Tube Surface of Tube Bundle Subjected in Two-phase Flow," Trans. Korean Soc. Mech. B, Vol. 37, pp. 9-18.
7 Blevins, R.D., 1990, "Flow-Induced Vibration," Second Edition, Van Nosrtrand, New York
8 Fritz, R.J., 1972, "The Effect of Liquids on the Dynamic Motions of Immersed Solids," ASME Journal of Engineering for Industry, Vol. 94, pp. 167-173.   DOI
9 Pettigrew, M. J. and Taylor, C.E., 1991, "Fluidelastic Instability of Heat Exchanger Tube Bundles; Review and Design Recommendations," ASME Journal of Pressure Vessel Technology, Vol. 113, pp. 242-256.   DOI
10 Price, S. J., 1995, "A Review of Theoretical Models for Fluidelastic Instability of Cylinder Arrays in Cross-Flow," Journal of Fluids and Structure, Vol. 9, pp. 463-518.   DOI
11 Carlucci, L.N., 1980, "Damping and Hydrodynamic Mass of a Cylinder in Simulated Two-Phase Flow," Journal of Mechanical Design, Vol. 102, pp. 597-602.   DOI
12 Carlucci, L. N. and Brown, J. D., 1983, "Experimental Studies of Damping and Hydrodynamic Mass of a Cylinder in Confined Two-Phase Flow," Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 105, pp. 83-89.   DOI
13 Pettigrew, M.J., Taylor, C.E. and Kim, B.S., 1989a, "Vibration of Tube Bundles in Two Phase Cross Flow; Part 1 - Hydrodynamic Mass and Damping," ASME Journal of Pressure Vessel Technology, Vol. 111, pp. 466-477.   DOI
14 Pettigrew, M.J., Tromp, J.H., Taylor, C.E. and Kim, B.S., 1989b, "Vibration of Tube Bundles in Two Phase Cross Flow; Part 2 - Fluid-Elastic Instability," ASME Journal of Pressure Vessel Technology, Vol. 111, pp. 478-487.   DOI
15 Pettigrew, M.J. and Taylor, C.E., 2003, "Vibration Analysis of Shell-and-Tube Heat Exchangers; An Overview-Part 2: Vibration Response, Fretting-Wear, Guidelines," Journal of Fluids and Structure, Vol. 18, pp. 485-500.   DOI
16 Sim, W.G., 2007, "An Approximate Damping Model for Two-Phase Cross-Flow in Horizontal Tube Bundles," 2007 ASME Pressure Vessel and Piping Division Conference, San Antonio, USA, PVP 2007-26176.
17 Feenstra, P.A., Weaver, D.S. and Judd, R.L., 2000, "An Improved Void Fraction Model for Two-Phase Cross-Flow in Horizontal Tube Bundles," International Journal of Multiphase Flow, Vol. 26, pp. 1851-1873.   DOI
18 Levy, S., 1960, "Steam Slip-Theoretical Prediction from Momentum Model," Trans. ASME, series C, J. Heat Transfer, Vol. 82, pp. 113-124.   DOI