• Title/Summary/Keyword: 공기 여과

Search Result 143, Processing Time 0.036 seconds

Resonant Voice in Singers

  • 진성민
    • Proceedings of the KSLP Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • 사람의 발성 기관은 공기를 짜내어 주는 역할을 하는 호흡기관(breathing apparatus)과 소리의 원음을 만들어 내는 성대(vocal folds) 그리고 성대로부터 만들어진 원음을 공명 (resonance) 시키고 여과(filtering) 시킴으로써 특징적인 소리의 모양을 갖추는 역할을 하는 성도(vocal tract)로 크게 나누어 볼 수 있다.

  • PDF

Permeation Characteristics of the Tubular Membrane with Continuous Air Cleaning System (연속식 공기세정 관형막 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.185-188
    • /
    • 2013
  • This study was carried out for microfiltration tubular membrane module equipped with self-designed air injection nozzle in order to determine the permeate flux due to the effect of membrane fouling reduction. The 0.1 wt% yeast particle solution was used as a feed solution and permeation tests were performed for the cases with and without air injection. Permeation fluxes were measured and analyzed to examine the effect of membrane fouling reduction. While the permeation flux without air injection decreased continuously, that with air injection was improved more than 30 percent than that of no air injection case.

Solid-Liquid Separation Characteristics with Bio-filter Media Reactor (여과분리형 생물반응조의 고액분리 특성)

  • Park, Young Bae;Jung, Yong Jun
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.347-353
    • /
    • 2014
  • This work was performed to find the effect of operation parameters on the permeate flux through the activated sludge dynamic layer, and to indicate the relationship between the water quality of supernatant and flux based on the results. Since the effluent can be obtained through steady and stable formation of cake layer in the bio-filter media system, it is an important subject to keep and control microbes with activated state in the bio-reactor. Filtration resistance was drastically increased at more than 18000mg/L of MLSS. With filtration time continued, the flux was gradually decreased and the water qualities of supernatant monitored by turbidity and TOC were also deteriorated. This phenomenon indicated that the organic materials generated by microbes and accumulated in the reactor might affect the flux in the system. In addition, the decrease of flux was simultaneously observed in the sludge volume index. When SVI was controlled from 150 to 250, the flux was also decreased. The proper aeration time was recommended to 30 to 60 seconds in this system. In order to operate this system steadily, therefore, the control of water quality of supernatant and SVI should be proceeded.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Variation of Flow and Filtration Mechanisms in an Infiltration Trench Treating Highway Stormwater Runoff (고속도로 강우유출수 처리를 위한 침투도랑에서 흐름조건에 따른 여과기작 및 효율분석)

  • Guerra, Heidi B.;Yu, Jianghua;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • The particle filtration mechanisms in an infiltration trench should be varying due to the different hydraulic conditions during stormwater runoff. The understanding of these variations associated with different filtration mechanisms and their effect on the particle removal efficiency is of vital importance. Therefore, a LID (Low Impact Development) system comprising of an infiltration trench packed with gravel and woodchip was investigated during the monitoring of several independent rainfall events. A typical rainfall event was divided into separate regimes and their corresponding flow conditions as well as filtration mechanisms in the trench were analyzed. According to hydraulic conditions, it was found out that filtration changes between vertical and horizontal flows as well as between unsaturated, saturated, and partially-saturated flows. Particle separation efficiency was high (55-76%) and was mainly governed by physical straining during the unsaturated period. It was then enhanced by diffusion during the saturated period (75-95%). When the trench became partially saturated at the end of the rainfall event, the efficiency decreased which was believed to be due to the existence of a negatively charged air-water interface which limited the removal to positively charged particles.

Treatability Study on the Remediation Groundwater Contaminated by TPH Cr6+ : Lab-Scale Experiment (TPH와 6가 크롬으로 오염된 지하수 처리를 위한 실내 실험)

  • Lee, Gyu-Beom;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.332-345
    • /
    • 2019
  • The purpose of the study is to evaluate the treatability of contaminated groundwater with TPH and (or) $Cr^{6+}$. Laboratory scale tests were performed for oil/water separation, dissolved air flotation (DAF), coagulation and precipitation, and filtration with sand and activated carbon respectively. Two times of oil/water separation tests for total 40 minutes of separation or separating time shows 90.2 % of TPH removal rate. In case of DAF test for high TPH sample, the TPH removal rates were not varied significantly by the variation of microbubble size. However, tests for low TPH samples show that TPH removal rate increases as microbubbles are smaller. When coagulant was added to sample for DAF test, TPH removal rate was increased 12.3 %. SS removal rate by DAF was 97.9 % at $16-40{\mu}m$ and it was increased as the size of microbubble is reduced. Tests for coagulation and precipitation were performed to evaluate the removal of $Cr^{6+}$ in groundwater. The increase of $FeSO_4$ dosage increased $Cr^{6+}$ removal rate in the coagulation and precipitation process. As the amount of activated carbon in the filter media increased TPH removal rate in the filtration process. SS removal rate by the filtration was 96.7 % similar to the results of DAF process tests. The filtration process treats TPH and SS. Best design parameters are determined as the size of sand is $425-850{\mu}m$ and the ratio of activated carbon and sand is 50:50.

Experimental Study on the Biofiltration of Toluene Gas (기상 톨루엔의 생물학적 여과에 관한 실험적 연구)

  • 홍성도;명성운;최석호;김인호;이현재;구본탁
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.469-473
    • /
    • 2000
  • We studied the removal of toluene vapors in a lab-scale biofiter. Biofiltration was performed in a column fed in a downflow manner with contaminated air at ambient conditions. The column was packed with a mixture of peat and calstone(5:3 vol. Ratio), which was inoculated with microbes of selected stains(Pseudomonas putida type A). The microorganisms were immobilized on the filter media and biofilms were formed. The fiofilter was operated at various inlet toluene concentrations for days, and treated up to a maximum elimination capacity of $20 g/m^3hr$ at an inlet load of $30 g/m^3hr$, which corresponds to removal efficiencies in the range 20∼90% and a gas retention time of 1 to 2 min. The pressure drop was almost negligible over the biofilter columns, amounting to only $1.062 cmH_2O/m$ and appreciably smaller than other studies. The effects of operating conditions such as flow rate, inlet toluene concentration and moisture content on the performance of the biofilter were sequentially investigated.

  • PDF

Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion (농작업자의 Kresoxim-methyl과 fenthion에 대한 호흡노출량 측정을 위한 IOM 채집기의 효율성 평가)

  • Lee, Jiho;Kim, Eunhye;Lee, Jonghwa;Shin, Yongho;Maasfeld, Wolfgang;Choi, Hoon;Moon, Joon-Kwan;Lee, Hyeri;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.230-240
    • /
    • 2015
  • An IOM sampler equipped with glass fiber filter has been recently utilized instead of solid adsorbent, which was used to measure the inhalation exposure of agricultural operator to pesticides. The aim of this study is to validate the efficacy of an IOM sampler by measuring the trapping efficiency and breakthrough using kresoxim-methyl water-dispersible granule and fenthion emulsifiable concentrate. On LC-MS/ MS, minimum detection level was 12.5 pg and method limit of detection was 5.0 ng/mL. Good linearity ($R^2$ > 0.999) for matrix matched standards was obtained. Recoveries of pesticides from glass fiber filter were 102-109% (kresoxim-methyl) and 97-104% (fenthion) while those from XAD-2 resin were 94-98% (kresoxim methyl) and 93-100% (fenthion). Trapping efficiency test was performed with personal air pumps and IOM sampler (glass fiber filter) connected with solid adsorbent (XAD-2 resin) with two types of formulation (solid and liquid) which were diluted by standard rate and sprayed to IOM sampler. Those pesticides were trapped only in glass fiber filter without any breakthrough to solid adsorbent. After spiking of pesticides to glass fiber filter, breakthrough test was carried out with IOM sampler (glass fiber filter) which was connected with solid adsorbent. As a results, 87-101% of kresoxim-methyl and 96-105% of fenthion remained in spiked glass fiber filter, however, no pesticides were detected in second glass fiber filter and solid adsorbent. In conclusion, IOM sampler which equipped with glass fiber filter can be applied widely for pesticide inhalation exposure study since it has good trapping efficiency and adsorption capacity, regardless of the solid or liquid formulation.

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.