• Title/Summary/Keyword: 공공빅데이터

Search Result 302, Processing Time 0.048 seconds

Research Trends and Issues of Appraisal of Digital Records : Focused on Datasets and Websites (전자기록 평가의 동향과 과제 데이터세트와 웹사이트 평가를 중심으로)

  • Hyun, Moonsoo
    • The Korean Journal of Archival Studies
    • /
    • no.71
    • /
    • pp.5-48
    • /
    • 2022
  • This study explored recent discussions, experiments, and case studies related to the appraisal of digital records, which was focused on datasets and websites. Based on this, it proposed what issues should be addressed for developing appraisal policies. To this end, it categorized appraisal criteria that can be applied to digital records, examined the arguments that in the digital environment total retention is necessary in the era of big data, and that selective retention is still necessary, based on the literature review. Subsequently, after analyzing case studies conducted on datasets and websites, the study dealt with what discussions should be made in terms of targets, tools, objectives of appraisal, and roles/responsibilities which used to develop appraisal policy. This study addressed the following questions to reveal current debates and challenges; First, what appraisal criteria can be applied to digital records in general; second, is the appraisal activities still necessary in the era of digital environment and big data; third, what are the results that case studies produced for the appraisal of digital records; fourth, what changes are expected in the future regarding the appraisal. Based on these questions, it tried to reveal the main issues necessary to develop the appraisal policies that can be applied to various types of digital records created in the public domain.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Analyzing Influence Factors of Foodservice Sales by Rebuilding Spatial Data : Focusing on the Conversion of Aggregation Units of Heterogeneous Spatial Data (공간 데이터 재구축을 통한 음식업종 매출액 영향 요인 분석 : 이종 공간 데이터의 집계단위 변환을 중심으로)

  • Noh, Eunbin;Lee, Sang-Kyeong;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.581-590
    • /
    • 2017
  • This study analyzes the effect of floating population, locational characteristics and spatial autocorrelation on foodservice sales using big data provided by the Seoul Institute. Although big data provided by public sector is growing recently, research difficulties are occurred due to the difference of aggregation units of data. In this study, the aggregation unit of a dependent variable, sales of foodservice is SKT unit but those of independent variables are various, which are provided as the aggregation unit of Korea National Statistical Office, administration dong unit and point. To overcome this problem, we convert all data to the SKT aggregation unit. The spatial error model, SEM is used for analysing spatial autocorrelation. Floating population, the number of nearby workers, and the area of aggregation unit effect positively on foodservice sales. In addition, the sales of Jung-gu, Yeongdeungpo-gu and Songpa-gu are less than that of Gangnam-gu. This study provides implications for further study by showing the usefulness and limitations of converting aggregation units of heterogeneous spatial data.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

Development of Procurement Announcement Analysis Support System (전자조달공고 분석지원 시스템 개발)

  • Lim, Il-kwon;Park, Dong-Jun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.53-60
    • /
    • 2018
  • Domestic public e-procurement has been recognized excellence at home and abroad. However, it is difficult for procurement companies to check the related announcements and to grasp the status of procurement announcements at a glance. In this paper, we propose an e-Procurement Announcement Analysis Support System using the HDFS, HDFS, Apache Spark, and Collaborative Filtering Technology for procurement announcement recommendation service and procurement announcement and contract trend analysis service for effective e-procurement system. Procurement announcement recommendation service can relieve the procurement company from searching for announcements according to the characteristics and characteristics of the procurement company. The procurement announcement/contract trend analysis service visualizes the procurement announcement/contract information and procures It is implemented so that the analysis information of electronic procurement can be seen at a glance to the company and the demand organization.

A Performance Test of Mobile Cloud Service for Bayesian Image Fusion (베이지안 영상융합을 적용한 모바일 클라우드 성능실험)

  • Kang, Sanggoo;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.445-454
    • /
    • 2014
  • In recent days, trend technologies for cloud, bigdata, or mobile, as the important marketable keywords or paradigm in Information Communication Technology (ICT), are widely used and interrelated each other in the various types of platforms and web-based services. Especially, the combination of cloud and mobile is recognized as one of a profitable business models, holding benefits of their own. Despite these challenging aspects, there are a few application cases of this model dealing with geo-based data sets or imageries. Among many considering points for geo-based cloud application on mobile, this study focused on a performance test of mobile cloud of Bayesian image fusion algorithm with satellite images. Two kinds of cloud platform of Amazon and OpenStack were built for performance test by CPU time stamp. In fact, the scheme for performance test of mobile cloud is not established yet, so experiment conditions applied in this study are to check time stamp. As the result, it is revealed that performance in two platforms is almost same level. It is implied that open source mobile cloud services based on OpenStack are enough to apply further applications dealing with geo-based data sets.

A Study on Perception for Public Safety of Seoul Citizens using Multiple Regression Analysis (다중회귀분석을 이용한 서울시민 체감안전도에 관한 연구)

  • Uh, Soo Kyun;Cho, Sung-Hoon;Kim, Jeong-Joon;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.195-201
    • /
    • 2018
  • The government and the police are trying to expand the safety of the people by spreading "four major social evil erasures" intensively crackdown and prevention activities of sexual assault, school violence, domestic violence, and bad foods for the main purpose of security activities I made an effort. However, in spite of such efforts, the public's feelings of social unrest and the concern about security have not been significantly improved. Therefore, in this paper, using R which is the tool for analyzing big data which is most widely used in each field such as enterprise, consulting, public field, etc., R Using variables measured at each level, we analyzed by analyzing multiple regression analyzes, and confirmed what kind of correlation there is in relation to the direction affecting policy improvement I will try to present it.

Improvement of the Local Government's Spatial Information Policy - A Case of Seoul Metropolitan Government - (지방자치단체 공간정보정책 개선방안 연구 - 서울특별시 공간정보정책 및 시스템 분석 사례 -)

  • Choi, Jun-Young;Won, Jong-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • Local governments' spatial information policies are very important in that it can increase the relatedness to upper policy regarding the share, openness and converged utilization of spatial information and contribute to voluntary participation and creative uses linked to big data. However, local governments' spatial information policies require enhancement since it need to update framework spatial data, to derive spatial information service and to share the data. In this research, we compared the spatial information policies and related systems of central and local governments, and analyzed the local governments' spatial information policy enforcement plans and the Seoul metropolitan government's utilization survey on 32 spatial information systems. In the result, for the improvement of local governments' spatial policies, on-demand updating of base map using the as built drawings linked to field work departments, securing up-to-date public domain spatial information through the NSDI system, sharing of spatial information based on the spatial information platform and benchmarking of best practices related to the spatial information based policy participation are suggested.