• Title/Summary/Keyword: 곱셈 연산

Search Result 554, Processing Time 0.023 seconds

A New Modular Multiplication Algorithm for Fast Modular Exponentiation (모듈라 멱승 연산의 빠른 수행을 위한 새로운 모듈라 곱셈 알고리즘)

  • 홍성민;오상엽;윤현수
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.173-182
    • /
    • 1995
  • 모듈라 멱승(modular exponentiation) 연산은 암호학에서 기본적이고 중요한 연산이다. 그러나, 이는 다정도 정수(multiple precision integer)들을 다루기 때문에 그 연산시 간이 무척 많이 걸리므로 이를 단축시킬 필요가 있다. 모듈라 멱승 연산은 모듈라 곱셈(modular multiplication)의 반복으로서, 전체 연산시간을 단축시키기 위해서는 모듈라 곱셈의 수행시간을 단축시키거나, 모듈라 곱셈의 반복횟수를 줄이는 것이 필요하다. 본 논문에서는 모듈라 곱셈을 빠르게 수행하기 위한 알고리즘 두 개를 제안한다. 하나는 서로 다른 두 수의 모듈라 곱셈 알고리즘이고, 다른 하나는 모듈라 제곱을 빠르게 수행하는 알고리즘이다. 이 둘은 기존의 모듈라 곱셈 알고리즘들에 비해 각각 절반과, l/3가량의 단정도 곱셈(single-precision multiplication)만을 필요로 한다. 실제로 PC상에서 구현한 결과 각각 100%와 30%의 속도향상을 보인다.

  • PDF

A Fast Method for Computing Multiplicative Inverses in $GF(2^{m})$ Using Normal Basis ($GF(2^{m})$에서 정규기저를 이용한 고속 곱셈 역원 연산 방법)

  • 장용희;권용진
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.84-87
    • /
    • 2002
  • 최근 정보보호의 중요성이 커짐에 따라 암호이론에 대한 관심이 증가되고 있다. 이 중 Galois 체 GF(2$^{m}$ )은 대부분의 암호시스템에서 사용되며, 특히 공개키 기반 암호시스템에서 주로 사용된다. 이들 암호시스템에서는 GF(2$^{m}$ )에서 정의된 연산, 즉 덧셈, 뺄셈, 곱셈 및 곱셈 역원 연산을 기반으로 구축되므로, 이들 연산을 고속으로 계산하는 것이 중요하다. 이들 연산 중에서 곱셈 역원이 가장 time-consuming하다. Fermat의 정리를 기반으로 하고, GF(2$^{m}$ )에서 정규기저를 사용해서 곱셈 역원을 고속으로 계산하기 위해서는 곱셈 횟수를 감소시키는 것이 가장 중요하며, 이와 관련된 방법들이 많이 제안되어 왔다. 이 중 Itoh와 Tsujii가 제안한 방법[2]은 곱셈 횟수를 O(log m)까지 감소시켰다. 본 논문에서는 Itoh와 Tsujii가 제안한 방법을 이용해서, m=2$^n$인 경우에 곱셈 역원을 고속으로 계산하는 방법을 제안한다. 본 논문의 방법은 필요한 곱셈 횟수가 Itoh와 Tsujii가 제안한 방법 보다 적으며, m-1의 분해가 기존의 방법보다 간단하다.

  • PDF

A Fast Exponentiation Algorithm Using a Window Method and a Factoring Method (윈도우 방법과 인수분해 방법을 혼합한 빠른 멱승 알고리즘)

  • 박희진;박근수;조유근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.539-541
    • /
    • 2000
  • 윈도우 방법과 인수분해 방법을 혼합 적용하면 멱승 연산에 사용되는 곱셈 연산의 횟수를 줄임으로써 멱승 연산을 빠르게 수행할 수 있다. 지수가 512비트일 때 윈도우의 크가 5인 윈도우 방법은 607번 정도의 곱셈 연산을 필요로 하는데 반해 윈도우와 인수분해 방법을 혼합한 방법은 599번 정도의 곱셈 연산을 필요로 한다. 이는 현실적으로 가능한 멱승 연산 중에서 가장 적은 수의 곱셈 연산을 요구하는 방법이다.

  • PDF

A Scalable Architecture of Montgomery Multiplier on GF(p) (GF(p)상의 Scalable한 몽고메리 곱셈기)

  • 이광진;장용희;권용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.382-384
    • /
    • 2004
  • 최근 인터넷의 발달과 함께 인터넷 상에서의 데이터 보안에 대한 요구가 매우 증가되고 있다. 그래서 공개키 또는 비밀키 알고리즘을 사용하여 데이터 보안을 해결하고 있다. 대부분의 공개키 알고리즘은 모듈러 연산들을 기반으로 살고 있으며 이 중 복잡도가 가장 높은 모듈러 멱승 연산은 모듈러 곱셈 연산을 반복 수행하여 계산된다. 그래서 모듈러 곱셈연산을 효율적으로 계산하기 위한 많은 방법들이 제안되어 왔으며 하드웨어 구현 시 속도와 효율성 문제로 몽고메리 곱셈기에 대한 연구가 주목을 받아 왔다. 현재 몽고메리 곱셈 알고리즘을 이용한 곱셈기는 대부분이 성능과 면적만을 고려한 구조로 보안성 향상을 위해 입력 데이터의 비트수 증가 시 곱셈기의 구조 변경이 요구된다. 따라서 본 논문에서는 비트수 길이가 변하더라도 곱셈기 구조는 변함이 없는 GF(p)상에서의 Scalable한 몽고메리 곱셈기 구조를 제안한다. Sealable한 곱셈기의 구조는 FPGA와 같이 메모리를 포함하는 하드웨어 플랫폼에 적합하다. 제안된 구조는 Xilinx FPGA를 이용하여 하드웨어로 구현하며 ModelSim Tool을 통해 기능 및 타이밍 시뮬레이션을 수행한다.

  • PDF

An Efficient Bit-serial Systolic Multiplier over GF($2^m$) (GF($2^m$)상의 효율적인 비트-시리얼 시스톨릭 곱셈기)

  • Lee Won-Ho;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.62-68
    • /
    • 2006
  • The important arithmetic operations over finite fields include multiplication and exponentiation. An exponentiation operation can be implemented using a series of squaring and multiplication operations over GF($2^m$) using the binary method. Hence, it is important to develop a fast algorithm and efficient hardware for multiplication. This paper presents an efficient bit-serial systolic array for MSB-first multiplication in GF($2^m$) based on the polynomial representation. As compared to the related multipliers, the proposed systolic multiplier gains advantages in terms of input-pin and area-time complexity. Furthermore, it has regularity, modularity, and unidirectional data flow, and thus is well suited to VLSI implementation.

Comparison of Modular Multiplication Algorithms that Use Small Memory (메모리를 적게 사용하는 모듈라 곱셈 알고리즘들의 비교)

  • 임승환;박근수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.670-672
    • /
    • 1999
  • 소인수 분해 문제 혹은 이산대수 문제의 어려움에 근거한 공개키 암호 시스템에서는 큰 수에 대한 모듈라 멱승연산이 전체 시스템의 속도를 좌우하는 큰 요인이 된다. 모듈라 멱승 연산은 모듈라 곱셈으로 이루어진 연산이므로 모듈라 곱셈의 횟수를 줄이거나 빠른 모듈라 곱셈을 이용하면 멱승 연산의 계산 속도가 향상한다. 모듈라 곱셈 방법 중에서도 메모리를 적게 사용하면서도 고속인 방법들을 골라 비교하여 본다.

  • PDF

A High Performance Modular Multiplier for ECC (타원곡선 암호를 위한 고성능 모듈러 곱셈기)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.961-968
    • /
    • 2020
  • This paper describes a design of high performance modular multiplier that is essentially used for elliptic curve cryptography. Our modular multiplier supports modular multiplications for five field sizes over GF(p), including 192, 224, 256, 384 and 521 bits as defined in NIST FIPS 186-2, and it calculates modular multiplication in two steps with integer multiplication and reduction. The Karatsuba-Ofman multiplication algorithm was used for fast integer multiplication, and the Lazy reduction algorithm was adopted for reduction operation. In addition, the Nikhilam division algorithm was used for the division operation included in the Lazy reduction. The division operation is performed only once for a given modulo value, and it was designed to skip division operation when continuous modular multiplications with the same modulo value are calculated. It was estimated that our modular multiplier can perform 6.4 million modular multiplications per second when operating at a clock frequency of 32 MHz. It occupied 456,400 gate equivalents (GEs), and the estimated clock frequency was 67 MHz when synthesized with a 180-nm CMOS cell library.

Optimized Implementation of Scalable Multi-Precision Multiplication Method on RISC-V Processor for High-Speed Computation of Post-Quantum Cryptography (차세대 공개키 암호 고속 연산을 위한 RISC-V 프로세서 상에서의 확장 가능한 최적 곱셈 구현 기법)

  • Seo, Hwa-jeong;Kwon, Hyeok-dong;Jang, Kyoung-bae;Kim, Hyunjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.473-480
    • /
    • 2021
  • To achieve the high-speed implementation of post-quantum cryptography, primitive operations should be tailored to the architecture of the target processor. In this paper, we present the optimized implementation of multiplier operation on RISC-V processor for post-quantum cryptography. Particularly, the column-wise multiplication algorithm is optimized with the primitive instruction of RISC-V processor, which improved the performance of 256-bit and 512-bit multiplication by 19% and 8% than previous works, respectively. Lastly, we suggest the instruction extension for the high-speed multiplication on the RISC-V processor.

A Comparative Analysis of Instructional Methods on the Properties of Multiplication in Elementary Mathematics Textbooks of Korea, Japan, and the US (한국, 일본, 미국의 초등학교 수학교과서에서 범자연수 곱셈의 연산 성질을 지도하는 방안에 대한 비교·분석)

  • Sunwoo, Jin
    • Education of Primary School Mathematics
    • /
    • v.22 no.3
    • /
    • pp.181-203
    • /
    • 2019
  • Even though the properties of operations in multiplication serve a fundamental basis of conceptual understanding the multiplication with whole numbers for elementary students, there has been lack of research in this field. Given this, the purpose of this study was to analyze instructional methods related to the properties of operations in multiplication (i.e., commutative property of multiplication, associative property of multiplication, distributive property of multiplication over addition) in a series of mathematics textbooks of Korea, Japan, and the US. The overall analysis was conducted in the following two aspects: (a) when and how to deal with the properties of multiplication in three instructional context (i.e., introduction, application, generalization), and (b) what models use to represent the properties of multiplication. The results of this showed that overall similarities in introducing the properties of multiplication .in (one digit) ${\times}$ (one digit) as well as emphasizing the divers representation. However, subtle but meaningful differences were analyzed in applying and generalizing the properties of multiplication. Based on these results, this paper closes with some implications on how to teach the properties of operations in multiplication properties in elementary mathematics.

Design of LSB Multiplier using Cellular Automata (셀룰러 오토마타를 이용한 LSB 곱셈기 설계)

  • 하경주;구교민
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Modular Multiplication in Galois Field GF(2/sup m/) is a basic operation for many applications, particularly for public key cryptography. This paper presents a new architecture that can process modular multiplication on GF(2/sup m/) per m clock cycles using a cellular automata. Proposed architecture is more efficient in terms of the space and time than that of systolic array. Furthermore it can be efficiently used for the hardware design for exponentiation computation.

  • PDF