• Title/Summary/Keyword: 골재화

Search Result 291, Processing Time 0.027 seconds

Proposals of Integration of Korea Industrial Standard for Aggregates for Efficient Quality Control of Concrete Aggregate (콘크리트용 골재 품질 관리 효율화를 위한 골재 관련 KS 표준 통합 방안)

  • Lee, Jun-Seok;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • The objective of this paper is to provide integrated Korea industrial standards(KS) for concrete aggregates, which has been separately provided with ten kinds of KS, in order to improve the way of quality management of concrete aggregate and to prevent distribution of unsuitable aggregates. For the sequences of the paper, typical foreign standards related to concrete aggregates including ASTM for US, EN for EU, JIS for Japan are reviewed and compared to provide necessities and feasibilities of the paper. Based on the analysis above results, existing KS for concrete aggregates, which have been separately provided with ten kinds being lack of correlation between each KS is integrated to KS F 2526 "Aggregates for concrete" in this paper. By doing this, in terms of terminology, the expression of the aggregate, which has been currently classified into specified terminologies of aggregates depending on sources, manufacturing methods of each aggregates, is able to be integrated to single expression of the aggregate for concrete. It is believed that integrated KS presented herein provides more desirable way in terms of its better accessibility, easier revision and closer connection between each aggregate kinds.

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Lightweight Aggregate Bloating Mechanism of Clay/Incinerated Ash/Additive System (점토/소각재/첨가제계 인공 경량골재의 발포기구)

  • Kwon, Yong-Joon;Kim, Yoo-Taek;Lee, Ki-Gang;Kim, Young-Jin;Kang, Seung-Gu;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.811-816
    • /
    • 2001
  • The influence of the incinerated ash and additives on glass phase formation of lightweight aggregate, weight-lightening, and the bloating mechanism was investigated. Clay was used as base materials and incinerated ash was added from 0 to 30wt%. The additives such as $Na_2CO_3,\;CaCo_3,\;K_2CO_3,\;MgCO_3$, and a little amount of waste oil were added to the mixed body. In clay/incinerated ash/additive system, it turned out that $CaCO_3\;and\;MgCO_3$ were the components for glass phase formation and $Na_2CO_3$ was the component for both glass phase formation and weight-lightening. The small addition of waste oil from 0.5wt% to 3.0wt% affect on the bloating of aggregate. Incinerated ash had a good effect on the glass phase controlling. The most effective condition controlling glass phase and bloating of aggregate was 10wt% incinerated ash, 2wt% waste oil at 1200$^{\circ}$C. The bloating mechanism of lightweight aggregate is as follows; 1) micro-crack formation caused by thermal-shock and gas generation from inside of aggregate, 2) volume expansion by glass phase formation on the aggregate surface and rapid gas bloating inside of aggregate, 3) densification after bloating.

  • PDF

An Experimental Study on Relation between compressive strength and Shear Wave velocity for characteristics of coarse aggregate size and type of cement (굵은 골재 최대치수 및 시멘트 종류에 따른 압축강도와 전단파 속도의 상관관계에 대한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-IL;Nam, Jeong-Hee;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-175
    • /
    • 2011
  • Strength is one of the very important factors to evaluate the physical properties of concrete. Aggregate forms the most parts in concrete. Cement as a binder in concrete is also closely related to strength. This experiment was tested to understand the effect of the characteristics of aggregate and cement on the relationship between concrete compressive strength and Shear Wave velocity. It was experimented by the different types of cement and maximum coarse aggregate sizes. Type I cement and rapid setting cement was used. Aggregates from three different regions were used. Aggregate of 19mm and 13mm maximum coarse aggregate sizes was used for grading. The relationship between compressive strength and Shear Wave velocity was tested under the condition of same mixture. LA wear test was used to quantify the characteristics of aggregate. As a result, the relationship between concrete compressive strength and Shear Wave velocity was affected by the types of cement, but regular relationship was appeared regardless of types of aggregate, grading and abrasion ratio.

A Study on the Use of Mine-Waste on the Chung-Buk Area as the Aggregate of Concrete(I) -Part I : The Aggregate Properties of Mine Waste- (충북지역 광산발석의 콘크리트용 골재화에 관한 연구 (I) -제1보 : 광산발석의 콘크리트용 골재로써의 특성-)

  • 류현기;윤기원;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.197-202
    • /
    • 1994
  • This study is designed for analyzing the physical properties of grading, shape, specific gravity and etcetera of mine-waste as the aggregate of concrete when mine waste is crushed by jaw crusher, and is aimed presenting the using the possibility, content and reference data for the quality control of practical use on the concrete using the mine-waste aggregate.

  • PDF

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF

A Study on Aggregate Mix Design of Dumbbell-shape Fiber Reinforced Asphalt Concrete Mixture using Bailey Method (베일리 방법을 이용한 아령형 섬유보강 아스팔트 혼합물의 골재 배합설계법 연구)

  • Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6534-6541
    • /
    • 2013
  • The aim of this study was to develop a fiber-reinforced asphalt mixture that was designed to do the following: 1) address fatigue cracks, which is a major source of damage; and 2) increase the rutting resistance. This study reports the effects of the aggregate mixture design that incorporates a dumbbell-shaped fiber. An experiment was carried out to measure the unit weights and unit weight ratios between the mixture that was compacted and the one that was not. A method to substitute a specific aggregate mixture with the dumbbell-shaped fiber was confirmed using the volume concept according to the Bailey method. The results showed that the weight of the PCS aggregate mixture that need to be replaced was 11.88g when a 0.3% reinforcing fiber was added to the 1950g mixture.

A Comparative Study on the Quality of Recycled Aggregate for Concrete by Crushing Method (파쇄 방법에 따른 콘크리트용 순환골재의 품질 비교 연구)

  • Choi, Won-Young;Lee, Sae-Hyun;Kim, Seoung-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • In this study, the quality of recycled aggregate for concrete was investigated as the number of recycled aggregate crushing cycles, grinder and crusher, peeling and crushing. First, the quality of density, absorption ratio and solid content was improved as the separation distance decreased and the number of crushing increased, depending on the number of crushing of recycled aggregate and the distance between mantle and cone cave. The quality of density, absorption ratio and solid content was improved as the wire mesh used in striking plate and the number of hammers increased, depending on the type of striking plate and the number of hammers.

Physical Properties of Old Fluvial Aggregates in the Southeastern of Jeonnam Province, Korea (전남 동남부 지역에 부존하는 육상골재의 물성특성에 관한 연구)

  • Kim Ju Yong;Oh Keun Chang;Yang Dong Yoon;Hong Sei Sun;Chang Soo Bum;Lee Jin Young;Rim Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.319-334
    • /
    • 2005
  • Some of old fluvial sediments are originally composed of fine and silty-clay grains with sands or some of them have been segregated by weathering as a result of the influence of groundwater fluctuations. For this reason, some of old fluvial sediments are not suitable for using as fine aggregates. Furthermore, the old fluvial aggregates with comparatively good quality have been exploited for a long time and quality of most remainders have been significantly poor. Though many old fluvial aggregates do not satisfy the quality controls(QC) standards such as KS F2526 and KS F 2527, they must be utilized to various usage suitable far different quality categories. Thus, we try to make constant efforts to utilize aggregates of all qualities. This study shows that physical properties of old fluvial aggregates are both controlled by source rocks and also related to old fluvial environment.

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF