DOI QR코드

DOI QR Code

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag

콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석

  • Park, Kyung-Taek (Department of Architectural Engineering, Cheong-ju University) ;
  • Han, Min-Cheol (Department of Architectural Engineering, Cheong-ju University) ;
  • Hyun, Seung-Yong (Department of Architectural Engineering, Cheong-ju University)
  • 박경택 (청주대학교 건축공학과, (주)삼표산업) ;
  • 한민철 (청주대학교 건축공학과) ;
  • 현승용 (청주대학교 건축공학과)
  • Received : 2019.03.09
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

본 연구는 석탄가스화발전(IGCC)에서 발생하는 부산물인 CGS에 대한 콘크리트용 잔골재로서의 활용성을 분석한 것이다. 즉, KS F 2527 "콘크리트용 골재"에서 천연 및 용융슬래그 잔골재에 해당하는 품질항목을 중심으로 CGS 1~12회분에 대한 물성평가를 실시하였다. 그 결과, 물리적인 특성으로 입자모양판정실적률, 안정성 및 팽창성은 KS의 품질기준을 전부 만족하였으나, 절건밀도와 흡수율은 7~12회분에서 품질이 불안정한 것으로 나타났다. 입도의 경우 불균일한 굵은 입자분포로 인해 품질이 다소 불안정하였고, 7~12회분은 입자가 너무 굵은 것으로 나타났다. 유해물질 특성으로 0.08mm체 통과량 또한 7~12회분의 일부 수준에서 KS기준을 벗어났으나, 염화물함유량, 점토덩어리, 석탄 및 갈탄은 모두 만족하는 것으로 나타났다. 한편, 화학성분은 1~6회분에서 $SO_3$를 제외하고 전부 만족하였으며, 유해물질 함유량 용출량은 함유량에서 7~12회분의 F를 제외하고 전부 규정치 이내로 나타났다. SEM분석 결과 1~6회분에 비해 7~12회분이 거친 표면성상 및 다공질을 보여 품질이 저하된 것으로 판단되었다. 따라서 향후 콘크리트용 골재로서 활용하기 위해서는 별도 조치를 통한 품질편차 감소가 필요하고, 양질의 골재와 혼합하여 품질을 보완한다면 골재수급난 해소 및 순환자원 활용에 긍정적으로 기여할 수 있을 것으로 판단된다.

Keywords

GSJHDK_2019_v7n2_101_f0001.png 이미지

Fig. 1. Integrated Gasification Combined Cycle(IGCC)

GSJHDK_2019_v7n2_101_f0002.png 이미지

Fig. 2. Generation process of CGS

GSJHDK_2019_v7n2_101_f0003.png 이미지

Fig. 3. Absolute dry density due to sampling

GSJHDK_2019_v7n2_101_f0004.png 이미지

Fig. 4. Water absorption ratio due to sampling

GSJHDK_2019_v7n2_101_f0005.png 이미지

Fig. 5. Distribution of grain shape due to sampling

GSJHDK_2019_v7n2_101_f0006.png 이미지

Fig. 6. Cumulative passing due to sampling

GSJHDK_2019_v7n2_101_f0007.png 이미지

Fig. 7. Fineness modulus due to sampling

GSJHDK_2019_v7n2_101_f0008.png 이미지

Fig. 8. Passing ratio of 0.08mm sieve due to sampling

GSJHDK_2019_v7n2_101_f0009.png 이미지

Fig. 9. Chloride due to sampling

GSJHDK_2019_v7n2_101_f0010.png 이미지

Fig. 10. SEM result of CGS

Table 1. Experimental plan

GSJHDK_2019_v7n2_101_t0001.png 이미지

Table 2. Experimental method

GSJHDK_2019_v7n2_101_t0002.png 이미지

Table 3. Basic properties of CGS fine aggregate

GSJHDK_2019_v7n2_101_t0003.png 이미지

Table 4. Chemical composition

GSJHDK_2019_v7n2_101_t0004.png 이미지

Table 5. Harmful substances

GSJHDK_2019_v7n2_101_t0005.png 이미지

References

  1. Han, C.G., Park, B.M. (2017). Analyzing the engineering properties of cement mortar using mixed aggregate with reject ash, Journal of Korean Recycled Construction Resources Institute, 5(3), 247-252 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.247
  2. Han, M.C., Moon, B.Y. (2017). The effect of combinations of electric arc furnace slag and lime stone aggregates on engineering properties of ultra high strength concrete with 80MPa, Journal of the Korean Recycled Construction Resources Institute, 5(3), 253-260 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.3.253
  3. KEPCO. (2018). Statistics of Electric Power in Korea, 87 [in Korean].
  4. Kim, B.K., Lee, S.J., Chon, C.M., Choi, H.S. (2018). Potential of coal gasification slag as an alkali-activated cement, Journal of the Korea Institute of Resources Recycling, 27(2), 38-47 [in Korean]. https://doi.org/10.7844/KIRR.2018.27.2.38
  5. Kim, S.C. (2011). Ceramic Material and IGCC (Integrated Gasification Combined Cycle), News & Information for Chemical Engineers, 29(5), 600-604 [in Korean].
  6. Korea Agency for Technology and Standards. (2016). KS F 2527 (Concrete Aggregate), Korea Standard [in Korean].
  7. Korea Electric Association. (2014). Journal of the Electric World, 452, 29-34 [in Korean].
  8. Korea Power Exchange. (2019). Electric Power Statistics Information System, EPSIS [in Korean].
  9. Oh, S.H., Seo, C.H. (1997). An experimental study on the properties of concrete with replacement of fine aggregate by reject-ash, Architectural Institute of Korea, 17(2), 1311-1315.
  10. Woo, S.K., Kim, S.Y., Hong, K.S., Seo, D.W. (2010). CCS and IGCC (Integrated Gasification Combined Cycle), Ceramist, 13(2), 32-40 [in Korean].
  11. Yu, M.Y., Lee, J.Y., Chung, C.W. (2009). The property estimation of fine aggregate blended with natural, crushed, and recycled fine aggregate, Journal of the Architectural Institute of Korea Structure & Construction, 25(11), 113-120.