• 제목/요약/키워드: 골재분포

Search Result 157, Processing Time 0.024 seconds

Fine Aggregates Size Effect on Rheological Behavior of Mortar (잔골재 입자 크기에 따른 모르타르의 레올로지 거동 특성)

  • Lee, Jin Hyun;Kim, Jae Hong;Kim, Myeong Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5636-5645
    • /
    • 2015
  • Physical characteristics of aggregates affect the workability and strength of mortar and concrete, which include their fineness ratio, particle size distribution and water absorption. The workability of construction materials decreases if the incorporated fine aggregates show improper size distribution of their particles. This study shows the particle size effect on the rheological behavior of mortar and provides basic information for evaluating its workability. A mini-slump flow test was adopted to evaluate the workability of mortar. In addition, its plastic viscosity and yield stress were measured using a rheometer for building materials. The sand samples were prepared by sieving river sand and sorting out with their particle sizes. As a result, it was observed that the fines less than 0.7 mm increases the yield stress and plastic viscosity of the mortar samples. If the fines are less than 0.34 mm, the water absorption of the fines dominates change on the workability.

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator (고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가)

  • Lim, Sanghyeong;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.17-26
    • /
    • 2016
  • The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.

Aggregate Utilization Estimation of River Sand according to Typical Location of Main Stream of Nakdong-River (낙동강 본류의 대표위치별 하천모래의 골재 활용성 평가)

  • Park, Jae-Im;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3719-3725
    • /
    • 2012
  • Due to the recent shortage of well-graded river sand resulting from a rapid growth of concrete construction, sea sand, crushed sand, and etc. are increasingly used instead. It is, however, well noted that non-washed sea sand leads to corrosion of the reinforcing steel in concrete, and thus eventually results in damage to concrete. Also, the crushed sand is not being widely used, since it is difficult to maintain the allowable amount of passing 0.08mm sieve and to adjust grading. On the other hand, because the fine sand of Nakdong-River has a poor grading but good quality as a fine aggregate for concrete, it is strongly needed to investigate the fine sand as an alternative fine aggregate. Thus, the purpose of this research is to evaluate the physical properties of the fine sand of Nakdong-River to utilize it actively as a fine aggregate. For this purpose, after the sand samples were collected according to typical location of main stream of Nakdong-River, the physical properties such as density in oven-dry condition, grading, unit volume mass, and etc. of them were estimated. It was observed from the test results that physical properties of the fine sand of Nakdong-River except grading were found to be excellent.

Influence of the Gradation of Aggregates on Permeability of Polymer Concrete (폴리머콘크리트의 투수성에 미치는 골재 입도 분포의 영향)

  • 윤길봉;이병렬;전찬기;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.141-146
    • /
    • 2001
  • Permeable polymer concrete has a lot of internal voids, which has more excellent performance in permeability and durability than asphalt and cement concrete. Therefore, in this paper, influences of grading distribution of aggregates on the permeable polymer concrete are presented using polyester resin as binders. According to test results, it shows that compressive strength and unit weight increase with continuous grading distribution and increase of binder content, while void and permeability coefficient shows decline tendency

  • PDF

An Experimental Study on the Water-Proofing Properties of Cement Mortar with the Grading Variations of Fine Aggregate (잔골재의 입도분포 변화에 따른 시멘트 모르터의 방수특성에 관한 실험적 연구)

  • 윤기원;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.33-36
    • /
    • 1991
  • This study is designed for analyzing the properties of water-proofing on cement mortar according to the using ethylene vinyle acetate emulsion, and the fine aggregate grading such as uniform, gab and continuosly grading. And is aimed for presenting the reference data on the practical use.

  • PDF

Influence on the Grading of Aggregates on Properties of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 특성에 미치는 골재 입도 분포의 영향)

  • 윤길봉;황인성;이병렬;전찬기;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.111-116
    • /
    • 2002
  • Permeable polymer concrete has a lot of internal voids, which has more excellent performance in permeability and durability than asphalt and cement concrete. Therefore, in this paper, influences of grading distribution of aggregates on the permeable polymer concrete are presented using polyester resin as binders. According to test results, it shows that compressive strength and unit weight increase with continuous grading distribution and increase of binder content, while void and permeability coefficient shows decline tendency.

  • PDF

study of proprties foaming glass from waste glass (폐유리를 이용한 발포 유리 특성 연구)

  • Kim, Sung-Shin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.126-128
    • /
    • 2007
  • 본 논문은 산업현장에서 발생하는 대표적인 폐유리를 기본 소재로 카본의 입도에 분포에 따른 발포 기공의 변화와 그에 따른 강도의 변화를 측정하고자 한다. 산업체에서 발생하는 폐유리는 그 양이 점차 늘어나고 있으며, 매립으로 인한 토양 오염 또한 심각한 상태이며 이에 활용도로 발포와 재용융의 다양한 방법으로 재활용이 이루어지고 있으며, 본 실험은 발포를 통한 여과제 또는 경량 골재, 수질 정화용 필터로 사용을 하고 있는 발포의 기본 특성 중에 카본 발포제의 입도의 영향에 대하여 좀 더 확인해 보기 위해 실험을 진행 하였다.

  • PDF

지형정보시스템을 이용한 원자력 발전소 부지평가 방안

  • 오이성;이대수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.365-370
    • /
    • 1996
  • 본 논문은 GIS를 이용하여 원자력 발전소 건설을 위한 최적의 부지 선택 방안을 연구한 것이다. 근래 고도 경제 성장에 따라 전력 사용량이 날로 증가되고 있으며 이에 따라 발전소의 추가 건설이 시급한 실정이다. 그러나 발전소 건설에 필요한 적지가 희소한 실정이며 정부의 국토이용 계획, 각종 개발 제한 사항에 의해 갈수록 제약을 받게 되어 부지 선정에 많은 어려움이 예상된다. 본 논문에서는 기존의 원자력 발전소 입지선정 절차를 근간으로하여 부지평가에 영향을 주리라 예상되는 지질, 골재원, 수송조건, 부지표고, 용수원, 해상조건, 접안조건 및 주변환경, 인구 분포 등의 부지평가 요소들을 중심으로 하고, GIS를 이용한 부지평가 항목의 분석을 통하여 원자력 발전소 부지의 최적 후보지를 결정하는 개념적 방안을 제시하였다.

  • PDF

An Experimental Study on the Water-Proofing Properties of Concrete with the Grading Variations of Fine Aggregate (잔골재으 입도분포변화에 따른 콘코리트의 방수특성에 관한 실험적 연구)

  • 김승배;류현기;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.26-29
    • /
    • 1991
  • This study is designed for analyzing the properties of water-proofing on concrete according to the using EVA(ethylene vinyle acetate) emulsion, and the fine aggregate grading such as uniform, gap and continuously grading. And is aimed for presenting the reference data on the practical use.

  • PDF

Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete (잔골재 특성이 굳지 않은 지오폴리머 콘크리트에 미치는 영향)

  • Cho, Young-Hoon;An, Eung-Mo;Lee, Su-Jeong;Chon, Chul-Min;Kim, Dong-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2016
  • It is possible that aggregates add on to geopolymer based fly ash to mix mortar and concrete like cement. This is necessary to evaluate mineral composition, particle shape, surface, size distribution, density and absorption ratio for fine aggregates due to few detailed research to examine influence of fine aggregates properties on unhardened geopolymer concrete. In this research, used two different fine aggregates, Jumunjin sand(having quartz, mica, feldspar, pyroxene in mineral composition, more than 96% of total size between -0.60 and +0.30mm, angular shape and rough surface) and ISO sand(having almost all quartz in mineral composition, more than 51% size between -1.40 and +0.60mm, simultaneously varied size distribution, spherical shape and smooth surface). After an experimental result of the varied ratio of Si/Al=1.0-4.1 geopolymer paste, mix proportion respectively applied Si/Al=1.5 having the highest compressive strength to mortar and Si/Al=3.5 having the highest consistency to concrete. Geopolymer mortar by mixing with Jumunjin and ISO sand in varied range of 20-50wt.% showed flow size increase between 69.5 and 112.0mm, between 70.5 and 126.0mm respectively. Geopolymer concrete at an addition of 77wt.% of total aggregates ratio showed that average compressive strength was 32MPa and the consistency was favorable to molding. Since ISO sand observing varied size distribution, spherical shape, smooth surface, low absorption ratio resulted in advantageous properties on consistency of geopolymer, geopolymer concrete can be suitable for using the fine aggregates similar to ISO sand.