DOI QR코드

DOI QR Code

고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator

  • Lim, Sanghyeong (School of Civil, Environtmental and Architectural Engineering, Korea University) ;
  • Choo, Hyunwook (School of Civil, Environtmental and Architectural Engineering, Korea University) ;
  • Lee, Woojin (School of Civil, Environtmental and Architectural Engineering, Korea University) ;
  • Lee, Changho (Department of Marine and Civil Engineering, Chonnam National University)
  • 투고 : 2016.07.25
  • 심사 : 2016.10.31
  • 발행 : 2016.12.01

초록

본 연구에서는 등급 외 플라이애쉬 중 산화칼슘 함량이 높은 플라이애쉬를 저강도 유동화 채움재(controlled low strength material, CLSM)의 바인더로써 활용 가능성을 알아보았다. 사용된 플라이애쉬는 상대적으로 산화칼슘 함량이 높은 플라이애쉬를 배출하는 유동층형 보일러(circulating fluidized bed combustion boiler, CFBC)에서 시료를 채집하여 사용하였다. 배합한 시료의 유동성, 일축압축강도, 단위중량 등을 파악하여 CLSM 시료의 공학적 특징을 알아보았으며, 미세구조관찰과 X선 회절분석을 통한 CLSM 시료의 경화 메커니즘을 파악하였다. 실험 수행 결과 유동성을 만족하는 함수비는 42에서 85%의 범위를 보였으며, 유동성 시험 결과 골재의 종류와 관계없이 골재율이 증가함에 따라 유동성이 증가하는 것으로 나타났다. 일축압축강도는 0.3MPa에서 1.9MPa의 분포를 보였다. 규사를 골재로 사용한 경우 골재율이 증가함에 따라 일축압축강도는 증가하였으나, 바텀애쉬를 골재로 사용한 경우 골재율이 증가함에 따라 일축압축강도는 감소하였다. 미세구조관찰 결과와 X선 회절분석을 통해 CLSM 시료는 고분자 중합반응과 시멘트 수화반응을 통해 강도를 발현하는 것으로 확인하였다. 본 연구의 결과로부터 산화칼슘 함량이 높은 플라이애쉬의 자체 경화성을 이용하여 저강도 유동화 채움재로써 활용이 가능하다고 판단된다.

The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.

키워드

참고문헌

  1. ACI, 229R (2005), Controlled low strength materials, American Concrete Institute, Farmington Hills, MI, USA.
  2. ASTM C400 (2013), Standard test methods for quicklime and hydrated lime for neutralization of waste acid, West conshohocken, PA.
  3. ASTM D422 (2007), Standard test method for particle size analysis of soils, West conshohocken, PA.
  4. ASTM C618 (2012), Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, West conshohocken, PA.
  5. ASTM C1231 (2015), Standard practice for use of unbonded caps in determination of compressive strength of hardened concrete cylinders, West conshohocken, PA.
  6. ASTM D854 (2014), Standard test methods for specific gravity of soil solids by water pycnometer, West conshohocken, PA.
  7. ASTM D2488 (2009), Standard practice for description and identification of soils (visual-manual procedure), West conshohocken, PA.
  8. ASTM D6103 (2004), Standard test method for flow consistency of controlled low strength material (CLSM), West conshohocken, PA.
  9. Brewer, W. E. and Hurd, J. O. (1993), Controlled low atrength material - Controlled density fill (CLSM-CDF) as a backfill around flexible Structures, Structural performance of Pipes, pp. 25-34.
  10. Chindaprasirt, P., De Silva, P., Sagoe-Crentsil, K. and Hanjitsuwan, S. (2012), Effect of $SiO_2$ and $Al_2O_3$ on the setting and hardening of high calcium fly ash-based geopolymer systems, J. of Materials Science, Vol. 47, No. 12, pp. 4876-4883. https://doi.org/10.1007/s10853-012-6353-y
  11. Choi, S. K., Lee, S., Song, Y. K. and Moon, H. S. (2002), Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound, Fuel, Vol. 81, No. 8, pp. 1083-1090. https://doi.org/10.1016/S0016-2361(02)00006-6
  12. Davidovits, J. (1989), Geopolymers and geopolymeric materials, J. of Thermal Analysis, Vol. 35, 1989, pp. 429-441. https://doi.org/10.1007/BF01904446
  13. Du, L., Folliard, K. J. and Trejo, D. (2002), Effects of constituent materials and quantities on water demand and compressive strength of controlled low-strength material, J. of materials in Civil Engineering, Vol. 14, No. 6, pp. 485-495. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(485)
  14. Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M. and Van Deventer, J. S. (2005), Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 269, No. 1, pp. 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  15. Fredlund, M. D., Fredlund, D. G. and Wilson, G. W. (2000), An equation to represent grain-size distribution, Canadian Geotechnical J, Vol. 37, No. 4, pp. 817-827. https://doi.org/10.1139/t00-015
  16. Gabr, M. A. and Bowders, J. J. (2000), Controlled low-strength material using fly ash and AMD sludge, J. of Hazardous Materials, Vol. 76, No. 2, pp. 251-263. https://doi.org/10.1016/S0304-3894(00)00202-8
  17. Hwang, J. P., Shim, H. B., Lim, S. Y. and Ann, K. Y. (2013), Enhancing the durability properties of concrete containing recycled aggregate by the use of pozzolanic materials, KSCE J. of Civil Engineering, Vol. 17, No. 1, pp. 155-163. https://doi.org/10.1007/s12205-013-1245-5
  18. Hu, J. and Wang, K. (2005), Effects of aggregate on flow properties of mortar, In Proceeding of the Mid-Continent Transportation Research Symposium, p. 8.
  19. Hsu, H. M., Cheng, A., Chao, S. J., Huang, R., Cheng, T. C. and Lin, K. L. (2009), Controlled low strength materials containing bottom ash from circulating fludized bed combustion, International J. of Pavement Research and Technology, Vol. 2, No. 6, pp. 250-256.
  20. Irassar, E. F. (2005), Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at $20^{\circ}C$, Cement and Concrete Composites, Vol. 27, No. 1, pp. 77-84. https://doi.org/10.1016/j.cemconcomp.2003.10.003
  21. Kim, H. K., Jeon, J. H. and Lee, H. K. (2012), Flow, water absorption, and mechanical characteristics of normal-and high-strength mortar incorporating fine bottom ash aggregates, Construction and Building Materials, Vol. 26, No. 1, pp. 249-256. https://doi.org/10.1016/j.conbuildmat.2011.06.019
  22. Kumar, A. and Kumar, S. (2013), Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Construction and Building Materials, Vol. 38, pp. 865-871. https://doi.org/10.1016/j.conbuildmat.2012.09.013
  23. Lee, J. M., Kim, D. W. and Kim, J. S. (2011), Characteristics of co-combustion of anthracite with bituminous coal in a 200-MWe circulating fluidized bed boiler, Energy, Vol. 36, pp. 5703-5709. https://doi.org/10.1016/j.energy.2011.06.051
  24. Lee, N. K., Kim, H. K., Park, I. S. and Lee, H. K. (2013), Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products, Construction and Building Materials, Vol. 49, pp. 738-746. https://doi.org/10.1016/j.conbuildmat.2013.09.002
  25. Li, H., Xiao, H. G., Yuan, J. and Ou, J. (2004), Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, Vol. 35, No 2, pp. 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  26. Misra, A., Biswas, D. and Upadhyaya, S. (2005), Physicomechanical behavior of self-cementing class C fly ash-clay mixtures, Fuel, Vol. 84, No. 11, pp. 1410-1422. https://doi.org/10.1016/j.fuel.2004.10.018
  27. Puppala, A. J., Chittoori, B. and Raavi, A. (2014), Flowability and density characteristics of controlled low-strength material using native high-plasticity clay, J. of Materials in Civil Engineering, Vol. 27, No. 1, 06014026, pp. 1-6.
  28. Rattanasak, U. and Chindaprasirt, P. (2009), Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering, Vol. 22, No. 12, pp. 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022
  29. Thomas, M. D. A. (2007), Optimizing the use of fly ash in concrete, Skokie, IL, USA: Portland Cement Association, Skokie, IL, USA.
  30. Turner, J. P. (1997), Evaluation of western coal fly ashes for stabilization of low-volume roads, in testing soil mixed with waste or recycled materials, ASTM International, West conshohocken, PA, pp. 157-172.
  31. Xu, H. and Van Deventer, J. S. (2003), Effect of source materials on geopolymerization, Industrial & Engineering Chemistry Research, Vol. 42, No. 8, pp. 1698-1706. https://doi.org/10.1021/ie0206958
  32. Yoon, S. W. and Rho, J. S. (2004), Preparation and application of CSA expansive additives using industrial wastes, J. of the Korea Concrete Institute, Vol. 16, No. 3, pp. 369-374. https://doi.org/10.4334/JKCI.2004.16.3.369