• Title/Summary/Keyword: 골재분리

Search Result 103, Processing Time 0.038 seconds

The carbonation of self-consolidating concrete using lightweight aggregate (경량골재를 사용한 자기충전 콘크리트의 탄산화)

  • Kim, Yong-Jic;Kim, Young-Jin;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.245-246
    • /
    • 2009
  • This paper presents the development of lightweight aggregate self-consolidating concrete using lightweight aggregates. Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise building. Therefore experimental tests were performed as such mechanical properties and carbonation of self-consolidating concrete using lightweight aggregates.

  • PDF

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Effect of Anti-washout Admixture Implementation on Backfill Aggregates on Underwater Structures (수중 구조물 골재 속채움 시 수중 불분리성 혼화제의 적용 효과)

  • Kim, Ukgie;Choi, Changho;Park, Bonggeun;Li, Zhuang;Cho, Samdeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.59-67
    • /
    • 2014
  • With increasing underwater structure construction, there is high interest in offshore foundation and underwater grout and various study has been done in this area. For grout materials constructed underwater, it may be washed away by water or easily disturbed and material separation phenomenon during curing period always happens. As a result, it is difficult to ensure construction quality and this has a significant influence on the design strength of structure. In this study, to understand application effects of anti-washout admixture for the preplaced construction method, where grout is injected in monopile after filled with aggregates, laboratory tests on bleeding and compressive strength of anti-washout admixture were performed under various test conditions varying size of aggregate, water and cement ratio and admixture, and test results were compared and evaluated.

The Development of Multi Stage Separation Ball Mill for Producing Recycled Aggregate (순환 골재 생산을 위한 다단 박리형 볼밀 시스템 개발)

  • Lee, Han-Sol;Yu, Myouing-yuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2021
  • Natural aggregate regular exploitation has led to environmental and resource depletion issues; consequently, construction waste has become an important raw material in the supply of aggregate smoothly. The recycled aggregate produced in the most of recycled aggregate processing company in Korea has a high adhesion ratio of cement paste and mortar, which affects the water absorption ratio and density. Therefore, the quality of recycled aggregate needs to be improved. In this study, we improved the quality of recycled aggregate through the use of a multistage separation ball mill. This ball mill has a sieve which protects the ball mix and improves the motion. Products produced by using multistage separation ball mill were compared with various quality standard for utilization as recycle aggregate. Finally, we confirmed that the multistage separation ball mill can efficiently separate cement paste and mortar from natural aggregate and that it is suitable for the production of recycled aggregates.

Outline and Performance Evaluation of High Quality Recycled Fine Aggregate Manufacturing System Using Drying Gravity Separation Method (건식비중분리법에 의한 고품질순환잔골재생산시스템의 개요 및 성능평가)

  • Kim Moo-Han;Kim Gyu-Yong;Choi Kyongl-Yeul;Lee Do-Heun;Song Ha-Young;Roh Kyung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.111-114
    • /
    • 2006
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problem like the high price facilities, the long time progress of the work and the poor of recycled fine aggregate. The aim of this study is to investigate outline and performance evaluation of the drying specific gravity separation method to product high duality recycled fine aggregate. Finally, this study is shown investigate process flowing of drying separation type with gravity manufacture, producte system and function of detail devices. The performance of the method of drying specific gravity separation is certificated as the qualities of recycled fine aggregate satisfied the KS

  • PDF

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

Physical properties of concrete using high quality recycled aggregates (고품질 재생골재를 사용한 콘크리트의 물리적 특성)

  • Um, Nam-Il;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Ahn, Ji-Whan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.350-354
    • /
    • 2005
  • 본 연구에서는 건설폐기물에 포함되어있는 폐콘크리트를 사용하여 $200^{\circ}C,\; 300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$로 각 온도에 따라 열화 처리한 후 분쇄하여 시멘트 페이스트 분리량과 골재의 물리적 특성을 파악하였다. 열화 처리의 온도가 높아질수록 시멘트 페이스트의 분리율은 높아졌으며, 압축강도는 낮아지는 경향을 보였다.

  • PDF

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.