• Title/Summary/Keyword: 곡선 보 요소

Search Result 213, Processing Time 0.023 seconds

Analytical Evaluation of Behavior of Precast PSC Box Curve Bridge Based on Design Variables (프리캐스트 PSC 중공 박스 곡선교의 설계변수에 관한 해석적 거동 평가)

  • Kim, Sung-Bae;Kim, Sung-Jae;Park, Jeong-Cheon;Uhm, Ki-Ha;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.267-275
    • /
    • 2014
  • Recently, the construction of curved bridge has increased, thus researchers perform the analytic studies on PSC curved bridge. However, the grid analysis method that are mostly used in the construction industry is not adequate to acquire the precise behavior evaluation of curved PSC briges. Therefore, the precise finite element analysis considering the effective variables were performed to establish the basis for the design method of curved PSC bridge by using 3D elements and bar element. The evaluated variables in this analysis were the number of girders, loading point, section figure, change of prestressing force. The results show the load carrying capacity of the 3 girder type bridge is 200% of that of the 2 girder type, and that applying load on outer girder makes the load resistance capacity and the deflection deviation of 2 girders smaller. The structural capacity of the bridge is improved when the section size is increased, but the efficiency of it is not sufficient enough compare to that of the change of prestressing forces. The change of prestressing forces shows that the camber and the load carrying capacity are linearly increased as PS force is increased. Moreover, when the PS force applied on outer girder is increased than that of inner girder, the deviation of deflection the girders decreases, thereby the stability of the bridge is enhanced.

Development of Curved Beam Element with Shear Effect (전단효과를 고려한 곡선보 요소 개발)

  • 이석순;구정서;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2535-2542
    • /
    • 1993
  • Two-noded curved beam elements, CMLC (field-consistent membrane and linear curvature) and IMLC(field-inconsistent membrane and linear curvature) are developed on the basis of Timoshenko's beam theory and curvilinear coordinate. The curved beam element is developed by the separation of the radial deflection into the bending deflection. In the CMLC element, field-consistent axial strain interpolation is adapted for removing the membrane locking. The CMLC element shows the rapid and stable convergence on the wide range of curved beam radius to thickness. The field-consistent axial strain and the separation of radial deformation produces the most efficient linear element possible.

In-Plane Vibration Analysis of Asymmetric Curved Beams Using DQM (DQM을 이용한 비대칭 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2734-2740
    • /
    • 2010
  • The free in-plane vibration of asymmetric circular curved beams with varying cross-section is analyzed by the differential quadrature method (DQM) neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and boundary conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives the good accuracy even with a small number of grid points.

An Assumed Strain Beam Element for Spatial Post-Buckling Analysis of Non-symmetric and Shear Flexible Thin-Walled Beams (박벽보의 3차원 후좌굴 해석을 위한 Locking-Free 보요소)

  • Lee, Kyoung-Chan;Kim, Moon-Young;Park, Jung-Il;Chang, Sung-Pil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.719-730
    • /
    • 2007
  • This study presents a thin-walled space frame element based on the classical Timoshenko beam theory. The element is derived according to the assumed strain field in order to resolve the shear-locking phenomenon. The shape function is developed in accordance with the strain field which is assumed to be constant at a 2-noded straight frame element. In this study, the geometrically nonlinear analysis applies the Corotational procedure in order to evaluate unbalanced loads. The bowing effect is also considered faithfully. Two numerical examples are given; monosymmetric curved and nonsymmetric straight cantilever. When these example structures behave lateral-torsional bucking, the critical loads are obtained by this study and ABAQUS shell elements. Also, the post-buckling behavior is examined. The results give good agreement between this study and ABAQUS shell.

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.

Nonlinear Analysis of Reinfored Concrete Beams by Displacement Control Method (변위제어법에 의한 철근콘크리트 보의 비선형해석법)

  • 김진근;이을범;이태규
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • In this paper a computer program for displacement control method was developed, in which a certain displacement of the structure is increased and the applied loads and another displacements are obtained. To simplify the nonlinear structural analysis, the relationships of moment-curvature were linearized as elasto-softening model for over-reinforced concrete beam and as elasto-plastic-softening model for under-reinforced concrete beam. Since the result of the analysis of reinforced concrete beam depended on the element size beyond elastic zone, the relationship of moment-curvature was modified for each element by using the concept of fracture energy approach. Overall, analytical results accurately predicted the load-displacement behavior of reinforced concrete beams.

  • PDF

Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석)

  • Kang, Ki-Jun;Kim, Jang-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.417-425
    • /
    • 2007
  • The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.

Study on Structural Behavior of Pipe Loops Using CAESAR-II (CAESAR-II를 이용한 파이프 루프의 구조 거동 특성 연구)

  • Park, Chi-Mo;Yoon, Seong-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. The structural design of these pipes mostly relies on the commercial code, CAESAR-II, which was especially developed for the structural analysis of pipes. This study conducted stress analyses of the same pipe unit, including loops, using both CAESAR-II and MSC/NASTRAN, and compared the results to investigate the characteristics of CAESAR-II. A parametric study was then conducted of the various design variables of pipe loops using CAESAR-II to draw some useful information about the structural characteristics of the loops.

A Study on the New Computational Methods for the Negative Moment at Column Support in PSC Flat Plate (PSC 연속 평판슬래브의 지점 부모멘트 산정법 연구)

  • 박선규;이범식;한만엽
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.177-186
    • /
    • 1998
  • PSC 연속 평판슬래브의 설계는 부정정 평판슬래브에 대한 정확한 해석의 어려움 등으로 등가보이론과 등가골조이론에 의한 근사식을 수정없이 사용하거나 컴퓨터를 이용한 해석에 의존하고 있으나 해석결과를 간단하게 정확히 평가할 수 있는 기법은 없는 실정이다. 또한 PSC 연속 평판슬래브의 부재력은 긴장재의 곡선형태에 따라 변하므로 실제 설계시 PS 긴장재의 정확한 곡선식을 찾는 것은 매우 중요하다. 본 연구에서는 비부착 PSC 연속 평판슬래브를 설계할 때 기둥과 기둥을 연결하는 PS 긴장재의 기하학적 곡선형태를 결정하는 방법과, PS 긴장력으로 인해 발생하는 평판슬래브의 기둥부 휨모멘트에 대하여 판이론을 기초로 간편하게 계산하는 방법을 제안하였다. 본 연구에서 제안된 이론으로 계산된 PSC 연속 평판슬래브에 대한 해석값과 유한요소 해석에 의한 지점 부모멘트를 비교 검토하여, 본 논문에서 제시한 기법의 타당성을 입증하였다. 따라서 본 연구는 설계자에게 컴퓨터의 해석결과를 간단하고 정확하게 검증할 수 있도록 하였다.

  • PDF

Nonlinear Analysis Method by the Arc Length Method (Arc Length Method에 의한 비선형 문제의 해법)

  • 이대희;최종근
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • The performance for the algorithm of the arc length method has been examined in terms of the choice of the tangential stiffness matrix through the analysis for the snap buckling phenomenon of the arch beam. The curved beam element with 2 nodes including shear effect has been formed by strain element technique and then it has been used in this nonlinear analysis. Snap-through characteristics has been examined with respect to the ratios of the arch beam length to hight.

  • PDF