• Title/Summary/Keyword: 고해상도 영상정보

Search Result 670, Processing Time 0.028 seconds

The Geometric Correction of IKONOS Image Using Rational Polynomial Coefficients and GCPs (RPC와 GCP를 이용한 IKONOS 위성영상의 기하보정)

  • 강준묵;이용욱;박준규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • IKONOS satellite images are particularly well suited for stereo feature extraction. But, because IKONOS doesn't offer information about the satellite ephemeris and attitude, we have to use IKONOS RPC(Rational Polynomial Coefficients) data for 3-D feature extraction. In this study, it was intended to increase the accuracy and the efficiency in application of high resolution satellite images. Therefore, this study develop the program to extract 3-D feature information and have analyzed the geometric accuracy of the IKONOS satellite images by means of the change with the number, distribution and height of GCPs. This study will provide basic information for luther studies of the accuracy correction in IKONOS and high resolution satellite images.

A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor (고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구)

  • Kim, Young-Jin;Cha, Su-Young;Cho, Yong-Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • The information on the land cover along stream corridor is important for stream restoration and maintenance activities. This study aims to review the different classification methods for mapping the status of stream corridors in Seom River using airborne RGB and CIR digital ortho imagery with a ground pixel resolution of 0.2m. The maximum likelihood classification, minimum distance classification, parallelepiped classification, mahalanobis distance classification algorithms were performed with regard to the improvement methods, the skewed data for training classifiers and filtering technique. From these results follows that, in aerial image classification, Maximum likelihood classification gave results the highest classification accuracy and the CIR image showed comparatively high precision.

The Research of Efficient Context Coding Method for compression of High-resolution image in JPEG 2000 (고해상도 정지영상 압축을 위한 효율적인 JPEG2000용 Context 추출부의 연산 방법 연구)

  • Lee, Sung-Mok;Song, Jin-Gun;Ha, Joo-Young;Lee, Min-Woo;Kang, Bong-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.97-100
    • /
    • 2007
  • In order to overcome many defects in the current JPEG standard of still image compression, the new JPEG2000 standard has been development. The JPEG2000 standard is based on the principles of DWT and EBCOT Entropy Coding. EBCOT(Embedded block coding with optimized truncation) is the most important technology in the latest image-coding standard, JPEG2000. However, EBCOT occupies the highest computation time to operate bit-level processing. Therefore, many researches have achieved methods to minimize computation speed of EBCOT. Thus, this paper proposes the method of context-extraction that improves computational architecture. This paper proposes efficient context coding method. The proposed algorithm would apply to hard-wired JPEG2000 Encoder that is used for compression of high resolution image.

  • PDF

A study of Image Restoration using User Defined Mean.Wiener Filters in u-Health Care (u-헬스 케어에서 사용자 정의 평균.위너필터를 이용한 영상복원에 관한 연구)

  • Lee, Hyun-Chang;Shin, Hyun-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2008
  • According to the development of software and hardware about multimedia technologies, images are used to store information extracted from data. Noises by various causes, however, are added in the process of forming images, recording and transmitting in ubiquitous environments. In image restoration viewpoints to remove them. appropriate filtering methodologies, wiener of mean etc, are utilized. Various ways for image restoration are studied as well. Therefore, in this paper, we Propose user defined image restoration that applies the most appropriate parameters for image restoration and show the implementation result of the system using various parameters including mean filter and wiener filter to advance quality of degraded source image affected by noise in ubiquitous environment and medical fields.

  • PDF

Land Category Non-coincidence Measurements Using High Resolution Satellite Images and Digital Topographic Maps (고해상도 위성영상과 수치지형도를 이용한 지목 불부합의 정도 측정)

  • 홍성언;이동헌;박수홍
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • Basically a land parcel consists of a land parcel number, land category, land boundary and area, and land value is mostly determined by the land category. Generally people want to change their land use to increase their land value so that they can expect more benefits from the land. However, changing land use causes several problems with land properties, haphazard urban expansions and land category non-coincidences. Unfortunately, no effective solutions exist for land category non-coincidence problems. In this study, we proposed a methodology that can classify the land category based land covers using high resolution satellite images and digital topographic maps. For this, we obtained a parcel based land use/cover classification map. Using both this classification map and a digital cadastral map, we inspected land category non-coincidences. As a result, land category non-coincidence rates could be statistically measured and interpreted and demonstrate a possibility that we could quantitatively interpretate and measure cadastral non-coincidence automatically.

  • PDF

Vibration Reduction Device for Directional Moving Satellite Antenna (지향성을 가지고 동작하는 위성 안테나 진동저감 장치 )

  • SeokWeon Choi;Sang-Soon Yong
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.187-194
    • /
    • 2022
  • Although the magnitude of the disturbance caused by the driving of the motor operated to secure the high-speed and precise directivity of the antenna is small, it acts as a major cause of impairing the image quality of the observation satellite, which requires precision directing performance. In order to acquire high-resolution image information through the improvement of the high-resolution observation satellite, proper vibration isolation and reduction design are required so that jitter generated when the directional antenna motor is driven is not transmitted to the main mission equipment. In this paper, the development process of the directional antenna vibration reduction device applied to real satellites and the effect of micro vibration reduction before and after application will be examined. This device was designed as a way to significantly improve the jitter problem by replacing only one gear in the directional antenna driving unit with a spring damper gear without any additional interface equipment. It was first applied and launched to a high-resolution earth observation satellite, and has been successfully operated so far.

Synthesis of contrast CT image using deep learning network (딥러닝 네트워크를 이용한 조영증강 CT 영상 생성)

  • Woo, Sang-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.465-467
    • /
    • 2019
  • 본 논문에서는 영상생성이 가능한 딥러닝 네트워크를 이용하여 조영증강 CT 영상을 획득하는 연구를 수행하였다. CT는 고해상도 영상을 바탕으로 환자의 질병 및 암 세포 진단에 사용되는 의료영상 기법 중 하나이다. 특히, 조영제를 투여한 다음 CT 영상을 획득되는 영상을 조영증강 CT 영상이라 한다. 조영증강된 CT 영상은 물질의 구성 성분의 영상대비를 강조하여 임상의로 하여금 진단 및 치료반응 평가의 정확성을 향상시켜준다. 하지많은 수의 환자들이 조영제 부작용을 갖기 때문에 이에 해당되는 환자의 경우 조영증강 CT 영상 획득이 불가능해진다. 따라서 본 연구에서는 조영증강 영상을 얻지 못하는 환자 및 일반 환자의 불필요한 방사선의 노출을 최소화 하기 위하여 영상생성 딥러닝 기법을 이용하여 CT 영상에서 조영증강 CT 영상을 생성하는 연구를 진행하였다. 영상생성 딥러닝 네트워크는 generative adversarial network (GAN) 모델을 사용하였다. 연구결과 아무런 전처리도 거치지 않은 CT 영상을 이용하여 영상을 생성하는 것 보다 히스토그램 균일화 과정을 거친 영상이 더 좋은 결과를 나타냈으며 생성영상이 기존의 실제 영상과 영상의 구조적 유사도가 높음을 확인할 수 있다. 본 연구결과 딥러닝 영상생성 모델을 이용하여 조영증강 CT 영상을 생성할 수 있었으며, 이를 통하여 환자의 불필요한 방사선 피폭을 최소하며, 생성된 조영증강 CT 영상을 바탕으로 정확한 진단 및 치료반응 평가에 기여할 수 있을거라 기대된다.

  • PDF

Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band (고해상도 영상의 정사보정 정확도 검증 및 밴드별 상관성 비교연구)

  • Jin, Cheong-Gil;Park, So-Young;Kim, Hyung-Seok;Chun, Yong-Sik;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • The objective of this study is to verify the positional accuracy by performing the orthometric corrections on the high resolution satellite images and to analyze the band correlation between the high resolution images corrected with orthometric correction. The objectives also included an analysis on the correlation of NDVI. For the orthometric correction of images from KOMPSAT2 and IKONOS, systematic errors were removed in use of RPC data, and non-planar distortions were corrected with GPS surveying data. Also, by preempting the image points at the same positions within ortho images, a comparison was performed on positional accuracies between image points of each image and GPS surveying points. The comparison was also made on the positional accuracies of image points. between the images. For correlation of band and correlation of NDVI, the descriptive statistics of DN values were acquired for respective bands by adding the Quickbird images and Aerial Photographs undergone through orthometric correction at the time of purchase. As result, from a comparison on positional accuracies of Orthoimages from KOMPSAT2 and Ortho Images of IKONOS was made. From the comparison the distance between the image points within each image and GPS surveying points was identified as 3.41m for KOMPSAT2 and as 1.45m for IKONOS, presenting a difference of 1.96m. Whereas, RMSE between image points was identified as 1.88m. The level of correlation was measured by using Quickbird, KOMPSAT2, IKONOS and Aerial Photographs between inter-image bands and NDVI, showing that there were high levels of correlation between Quickbird and IKONOS identified from all bands as well as from NDVI, except a high level of correlation that was identified between the Aerial Photographs and KOMPSAT2 from Band 2. Low levels of correlation were also identified between Quickbird and Aerial Photographs from Band 1. and between KOMPSAT2 and IKONOS from Band 2 and Band 4, whereas, KOMPSAT2 showed low correlations with Aerial Photographs from Band 3. For NDVI, KOMPSAT2 showed low level of correlations with both of QuickBird and IKONOS.

The Inner Pipeline Scanning Method by Digital Image Processing and Lens Combination (영상처리기법과 렌즈조합에 의한 관로내 탐사기법)

  • Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The most common method of pipeline inspection is to use a remote-controlled-machine equipped with a CCTV, which, however, has many limitations to accurately inspect pipeline condition. In case of a typical CCTV, since the camera looks at the end point of the pipe, the locations of the defects and distance-readings are often different. In addition, the quality and accuracy of the inspection is highly dependent on the operator's skill and experience. In this research a new system is developed by use of the image processing techniques and the lens combination. The image acquisition system is developed that acquires the front and the side view of the pipe simultaneously. Side view unwrapping and stitching technology using image process techniques are developed which delivers high resolution image data.

  • PDF

3-D OCT Image Reconstruction for Precision Analysis of Rat Eye and Human Molar (쥐 눈과 인간 치아의 정밀한 단층정보 분석을 위한 OCT 3-D 영상 재구성)

  • Jeon, Ji-Hye;Na, Ji-Hoon;Yang, Yoon-Gi;Lee, Byeong-Ha;Lee, Chang-Su
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.423-430
    • /
    • 2007
  • Optical coherence tomography(OCT) is a high resolution imaging system which can image the cross section of microscopic organs in a living tissue with about $1{\mu}m$ resolution. In this paper, we implement OCT system and acquire 2-D images of rat eye and human molar samples especially in the field of opthalmology and dentistry. In terms of 2-D images, we reconstruct 3-D OCT images which give us another inner structural information of target objects. OPEN-GL reduces the 3-D processing time 10 times less than MATLAB.