• Title/Summary/Keyword: 고정형 안테나

Search Result 46, Processing Time 0.02 seconds

A Study on the Design and Fabrication of a Dual-Ground and Broad-band Internal Antenna for 4th-Generation Mobile Communications (4세대 이동통신용 이중접지 내장형 광대역 안테나의 설계와 제작에 관한 연구)

  • Park, Jung-Ryul;Choi, Byoung-Ha;Kong, Jin-Woo;Yun, Hyun-Su;Kim, Gue-Chol
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.100-108
    • /
    • 2008
  • In this paper, the dual-ground, high-gain and broad-band internal antenna has been designed and fabricated for 4th-generation mobile communication applications. The optimized antenna was fabricated using photolithography method. The antenna consist of the patches, antenna and system ground, and a probe. The patch and ground plane were separated by air. In order to prevent the demage due to radiator swaying, the foams(${\varepsilon}_r{\fallingdotseq}1.03$) were used to fix the patches and ground. The conductor for the radiators was 0.05 [mm] thick. The measured input return loss showed less than -10 [dB] at the broadband from 3499 to 4743 [MHz]. It's measured bandwidth was 1244 [MHz]. The radiation patterns measured at 3400, 3600, 3800, 4000 and 4200 [MHz] showed Omni-directional characteristics. The gain in the E-plane and H-plane was 4.7 ~ 6.1 and 2.1 ~ 4.3 [dBi], respectively.

  • PDF

Performance Analysis of MlMO-OFDMA System Combined with Adaptive Beamforming (다중 입출력과 적응형 빔형성 기술 결합기법을 적용한 직교주파수분할 다중 접속시스템의 성능 분석)

  • Chung, Jae-Ho;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.86-92
    • /
    • 2011
  • This paper details the downlink performance analysis of an multiple antennas system that combines adaptive beamforming and spatial multiplexing (SM) Multiple Input Multiple Output (MIMO). The combination of MIMO signal processing with adaptive beamforming is applied to WiBro, the South Korean Orthogonal Frequency Division Multiple Access (OFDMA) system that follows the IEEE 802.16e standard. Performance analysis is based on the results of experiments and simulations obtained from a fixed-point simulation testbed. Simulations demonstrate that the MIMO Beamforming OFDMA system improves the required signal to noise ratio (SNR) over the conventional MIMO OFDMA system by 3 dB (QPSK) / 2.5 dB (16-QAM) for the frame error rate (FER) of 1% in the WiBro signal environments. From the implementation of the fixed-point simulation testbed and its experimental results, we verify the feasibility of the MIMO Beamforming technology for realizing a practical WiBro base station.

Development of Onesegment Receiver for Car using Cooperative Reception Diversity based on Integrated Services Digital Broad-casting Terrestrial (ISDB-T기반의 협력수신 다이버시티를 이용한 차량용 원세그 수신기 개발)

  • Yoon, Dal-Hwan;Cho, Myun-Gyun;Lin, Chi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.66-72
    • /
    • 2011
  • In Japan, the specification for digital terrestrial television broadcasting systems has been approved for employing a transmission scheme for ISDB-T, which can accommodate HDTV service and portable mobile reception by adapting segmentation of frequency. In this paper, we have developed 3.5 inch mobile TV according to One-Seg system and presented the results of our development. In addition, we introduce two diversity schemes to compensate the defect that signal is interrupted when the portable TV is moving fast. In order to achieve a reliable communication in One-Seg system, we introduce STD(space time diversity) which uses more than 2 antennas at TX and cooperative reception diversity which utilizes signal-exchanging between different mobile terminals. And, its performance enhancements to reception reliability of previous system are evaluated by computer simulations.

Performance of Spectrum Sensing Using AF Cooperative Relay for Cognitive Radio System (인지 무선 통신에서 AF 협력 릴레이를 이용한 스펙트럼 센싱 성능)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • In this paper, we proposed spectrum sensing using cooperative relay to solve problem of sensing performance degradation due to CPE (Customer-Premises equipments) which causes low SNR (signal-to-noise ratio) problem. In cooperative communication system, AF (amplify-and-forward) and DF (decoded-and-forward) is widely used for relay mechanism. Also, it is expected that cooperative relay scheme guarantees the high sensing performance by its diversity gain. Based on these backgrounds, in this paper, we apply to cooperative relay scheme to the CR (Cognitive Radio) system, and simulation results show comparison of the sensing performance.

Mechanical Alignment of Hull Mounted Phased Array Radar on the Separated Mast (분리된 마스트에 설치되는 선체고정 위상 배열 레이더의 기계적 정렬)

  • Seo, Hyeong-Pil;Kim, Dae-Han;Kim, Joon-Woo;Lee, Kyung-Jin;Cho, Kyu-Lyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.465-473
    • /
    • 2019
  • This paper is meaningful as the first case where a 4 - sided hull-fixed phased array radar was installed on a mast separated from Korea and the alignment was verified. The mechanical alignment method was studied for accurately mounting two separate masts for naval ships and the 3D scanner for alignment. Hull-fixed phased array radar uses very high frequency, so the short wavelength can cause a phase difference of the device due to the small positional error. Since the array antenna is fixed with the hull, it has higher accuracy control than the rotary radar for 4 array surfaces. The study describes a method of checking the flatness of two radar masts manufactured at a factory, a method of aligning masts in a shipyard, and a method of aligning four array pad mounting surfaces. As a tool for this, a 3D laser scanner and a software-based method for comparing survey results with 3D CAD are used. This paper is meaningful as the first example of installing a four-sided hull-fixed phased array radar on a separate mast from a Korean naval ship and deriving a mechanical alignment method.

Adaptive Multi-target Estimation Algorithm in an IR-UWB Radar Environment (IR-UWB 레이더 환경에서 적응형 다중 목표물 추정 알고리즘)

  • Yeo, Bong-Gu;Lee, Byung-Jin;Kim, Sueng-Woo;Youm, Mun-Jin;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.81-88
    • /
    • 2016
  • In this paper, we propose an adaptive multi-target estimation algorithm using the characteristics of signals in the IR-UWB(Impulse-Radio Ultra Wideband) radar system, which is attracting attention because it has good transparency, robustness to the indoor environment, and high precision positioning of tens of centimeters. We proposed an algorithm that estimates multiple peaks with the characteristic that the signal reflected by the target has a peak. To verify the performance of these algorithms, multiple targets were placed in front of the radar and the existing technique and the multi - target estimation algorithm were compared. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. The number of estimates can be increased compared with the existing peak signal derivation method, and multiple targets can be derived. The conventional technique estimates only one target, which results in a mean square error of 1 while a multi - target estimation algorithm yields a result of about 0.05. The proposed method is expected to be able to apply multiple targets to the estimation and application in one IR-UWB module environment.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

DSP based Narrow-Band Signal Power Detector for Tracking Control of Satellite Antenna (위성통신안테나 추적제어를 위한 DSP 기반의 협대역신호 전력 검출기)

  • Kim, Won-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.184-188
    • /
    • 2006
  • This paper presents DSP based narrow band satellite communication signal power detector for tracking control of mobile satellite antenna system. An analog filter based conventional power detector has poor performance due to frequency drift of carrier. Also, it is very difficult to change an analog filter bandwidth according to changed bandwidth of transmitted signal. To solve these difficulties, we proposed DSP based signal power detector, which is easy to change bandwidth of filter and to match shifted frequency of carrier. The proposed signal power detector consists of a FFT function to measure frequency drift of carrier, a programmable filter bank function to limit of received signal bandwidth and a power calculation function to measure power of filtered signal in 12-bit linear scale. Test results of implemented signal power detector, based on TMS320C5402 DSP, showed that it satisfied required functions and performances and properly operated.

  • PDF

Accuracy Evaluation of DEM Produced by using KOMPSAT-5 InSAR Image (KOMPSAT 5호 InSAR영상을 이용한 DEM제작 정확도 평가)

  • Han, Seung-Hee
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.39-47
    • /
    • 2017
  • The SAR payload of the KOMPSAT-5 is equipped with an X-band (9.66GHz) microwave-based sensor. Especially, since it has a fixed antenna that can be electronically steered with respect to the azimuth and elevation planes, various applications are expected. This study evaluates the production performance and the accuracy of the DEM by producing DEM using the HR and UH mode images of KOMPSAT-5. To evaluate the production performance of the DEM, the sensitivity of DEM was assessed through a baseline analysis and $2{\pi}$ ambiguity; it was found to have good production performance. In addition, to evaluate the accuracy of the produced DEM, 30 check points were compared with SRTM data. As a result, STDEV ${\pm}15-20m$ accuracy was obtained. If the accuracy of the DEM is improved by adjusting the parameters of the filtering method or phase unwrapping method in the future, it will be possible to widely use the KOMPSAT-5 image for environmental and disaster monitoring.

Beam selection method for millimeter-wave-based uplink hybrid beamforming systems (밀리미터파 기반 상향링크 하이브리드 빔포밍 시스템을 위한 빔선택 방법)

  • Shin, Joon-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.818-823
    • /
    • 2016
  • Millimeter wave (mm-wave) communication systems provide high data rates owing to the large bandwidths available at mm-wave frequencies. Recently, analogue and digital combined beamforming, namely "hybrid beamforming" has drawn attentions owing to its ability to realize the required link margins in mm-wave systems. Taking into account the radio frequency (RF) hardware limitations, such as the analogue phase shifter gain constraint and the low resolution of the phase controller, we introduce an uplink hybrid beamforming system that includes discrete Fourier transform (DFT) based "fixed" analogue beamforming. We adopt a zero-forcing (ZF) multiple-input multiple-output (MIMO) equalizer to eliminate the uplink inter-user interferences. Moreover, to improve the sum-rate performances, we propose a transmit beam selection algorithm which makes the uplink effective channels, i.e., the beamformed channels, become near orthogonal. The effectiveness of the proposed beam selection algorithm was verified through numerical simulations.