• Title/Summary/Keyword: 고장신호

Search Result 427, Processing Time 0.022 seconds

An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors (유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법)

  • Nguyen, Hung N.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.23-35
    • /
    • 2013
  • This paper proposes an effective technique that is used to automatically extract feature vectors from vibration signals for fault classification systems. Conventional mel-frequency cepstral coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy. To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis, where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped filter is used to have centers calculated from distances between valley frequencies of the envelope. This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors. Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these special parameters to identify faulty types of induction motors. Experimental results indicate that the proposed extraction method outperforms other feature extraction algorithms, yielding more than about 99.65% of classification accuracy.

Optimum Monitoring Parameters for the Safety of Mechanical Seals (미캐니컬 씰의 안전운용 감시를 위한 최적 계측인자)

  • Soon-Jae Lim;Man-Yong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.214-219
    • /
    • 1997
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are generally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage, crack, breakage, fast and severe wear, excessive torque, and squeaking results in big problems. To identify abnormal phenomena on mechanical seals and to propose the proper monitoring parameter for the failure of mechanical seals, sliding wear experiments were conducted. Acoustic emission, torque, and temperature were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. Except for the initial part of every experiment, the variation of acoustic emission was well coincided with torque variation during the experiments. This study concludes that acoustic emission and torque are proper monitoring parameters for the failure of mechanical seals. The intensity of acoustic emission signals is measured in root mean square voltage. Temperature of sealing face will be used as a parallel parameter for increasing the reliability of monitoring system.

  • PDF

A Study of Hazard Analysis and Monitoring Concepts of Autonomous Vehicles Based on V2V Communication System at Non-signalized Intersections (비신호 교차로 상황에서 V2V 기반 자율주행차의 위험성 분석 및 모니터링 컨셉 연구)

  • Baek, Yun-soek;Shin, Seong-geun;Ahn, Dae-ryong;Lee, Hyuck-kee;Moon, Byoung-joon;Kim, Sung-sub;Cho, Seong-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.222-234
    • /
    • 2020
  • Autonomous vehicles are equipped with a wide rage of sensors such as GPS, RADAR, LIDAR, camera, IMU, etc. and are driven by recognizing and judging various transportation systems at intersections in the city. The accident ratio of the intersection of the autonomous vehicles is 88% of all accidents due to the limitation of prediction and judgment of an area outside the sensing distance. Not only research on non-signalized intersection collision avoidance strategies through V2V and V2I is underway, but also research on safe intersection driving in failure situations is underway, but verification and fragments through simple intersection scenarios Only typical V2V failures are presented. In this paper, we analyzed the architecture of the V2V module, analyzed the causal factors for each V2V module, and defined the failure mode. We presented intersection scenarios for various road conditions and traffic volumes. we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to analyze the risk of autonomous vehicle based on the simulation. We presented ASIL, which is the result of risk analysis, proposed a monitoring concept for each component of the V2V module, and presented monitoring coverage.

Signal Interlocking System of a Programmable Logic Controller Improvement Report (신호보안설비 전자연동장치(PLC) 개선 관련 보고)

  • Seok, Tae-Woo;Ko, Yang-Og;Yoo, Do-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.623-628
    • /
    • 2007
  • Metro Subway System is widely known as the leader of public transportation in a metropolitan area. The signal interlocking is one of the most important organs that plays a major role in the system. By improving the quality of signal interlocking on of the traffic system and keeping its maintenance on a high level will not only repair the current state, but it will also let the PLC(Programmable Logic Controller). The Non-Vital relay of No. 3, 4 Line are the most one of the unstable system, device, which underwent a process of fine manufacture establishment and a close examination, obtained as a new device. Utilizing the equipment with cautious preservation on the system will enhance the current state of the signal device. Especially, the test for improvement and development based upon the technique that decreases the frequency of defect produced will further precipitate its efficiency. With authorization of imposing the newly made equipment will bring improvement to the signal technology and to the industry at largest extent.

  • PDF

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration (다중 원추형으로 배치된 관성센서의 FDI 성능 분석)

  • Kim, Hyun Jin;Song, Jin Woo;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.943-951
    • /
    • 2015
  • Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.

A Study on Robustness Improvement of the Semiconductor Transmitter and Receiver Module By the Bias Sequencing and Tuning the Switching Time (바이어스 시퀀스와 스위칭 타임 튜닝을 통한 반도체 송수신 모듈의 강건성 향상에 대한 연구)

  • Yoo, Woo-Sung;Keum, Jong-Ju;Kim, Do-Yeol;Han, Sung
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.251-259
    • /
    • 2016
  • This paper describes that how to enhance the robustness of semiconductor TRM(Transmitter and Receiver Module) through the bias sequencing and tuning the switching time. Previous circuit designs focused on improving the MDS(Minimum Detection Signal) performance. Because TRM has critical problem which transmission output signal leak into receiver by it's compact design. Under this condition, TRM was frequently broken down within the MTBF(Mean Time Between Failure). This study proposes the bias sequencing and tuning the switching time to improve above problem. At first, we collected major failure symptom and infer it's cause. Second, we demonstrated it's effect by derive the improvement method and apply it to our system. And finally we can convinced that the proposed method clear the frequent failure problem with its lack of isolation.

A Study on Power Supply Method Design for Hot Standby Sparing System via Reliability Modeling (신뢰도모델링에 의한 이중계제어기 전원공급방식 설계에 관한 연구)

  • Shin, Duck-O;Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.527-532
    • /
    • 2007
  • In this paper, we suggest those two design plans for power supply method of Hot Standby Sparing System; one is the plan using MTBF based on Constant Failure Rate, and the plan using Reliability Function is the other. Traditionally, RBD (Reliability Block Diagram) is used for reliability prediction which is required to meet any requirements before system operation. However, the system that has redundancy, such as Hot Standby Sparing System, Is not suitable for system reliability modeling using combination model, such as RBD. In this paper, therefore, we demonstrate that for redundancy controller, redundancy modeling design toward fault occurrence design is more effective to build up a system with higher reliability and achieve the effectiveness of loss cost due to maintenance and failure occurred in operation, rather than combinational modeling design.

Vibration Data Denoising and Performance Comparison Using Denoising Auto Encoder Method (Denoising Auto Encoder 기법을 활용한 진동 데이터 전처리 및 성능비교)

  • Jang, Jun-gyo;Noh, Chun-myoung;Kim, Sung-soo;Lee, Soon-sup;Lee, Jae-chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1088-1097
    • /
    • 2021
  • Vibration data of mechanical equipment inevitably have noise. This noise adversely af ects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method (다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어)

  • Hwang, Nam-Eung;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

Fault Tolerance for IEEE 1588 Based on Network Bonding (네트워크 본딩 기술을 기반한 IEEE 1588의 고장 허용 기술 연구)

  • Altaha, Mustafa;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • The IEEE 1588, commonly known as a precision time protocol (PTP), is a standard for precise clock synchronization that maintains networked measurements and control systems. The best master clock (BMC) algorithm is currently used to establish the master-slave hierarchy for PTP. The BMC allows a slave clock to automatically take over the duties of the master when the slave is disconnected due to a link failure and loses its synchronization; the slave clock depends on a timer to compensate for the failure of the master. However, the BMC algorithm does not provide a fast recovery mechanism in the case of a master failure. In this paper, we propose a technique that combines the IEEE 1588 with network bonding to provide a faster recovery mechanism in the case of a master failure. This technique is implemented by utilizing a pre-existing library PTP daemon (Ptpd) in Linux system, with a specific profile of the IEEE 1588 and it's controlled through bonding modes. Network bonding is a process of combining or joining two or more network interfaces together into a single interface. Network bonding offers performance improvements and redundancy. If one link fails, the other link will work immediately. It can be used in situations where fault tolerance, redundancy, or load balancing networks are needed. The results show combining IEEE 1588 with network bonding enables an incredible shorter recovery time than simply just relying on the IEEE 1588 recovery method alone.